STATISTICS AND DATA SCIENCE

EDITORS

Prin. Dr. M. M. Rajmane Mrs. S. V. Mahajan Dr. Mrs. S. P. Patil

Certified as TRUE COPY

Principal

Ramniranjan Jhunjhunwala College, Ghatkopar (W), Mumbai-400086.

Prarup Publication, Kolhapur

Index

Sr. No	Title of Paper	Author	P.No
1.	Application of Logistic Regression Analysis in Microfinance for Women Empowerment	Vanita Suresh Lingayat and Dr. H. S. Lunge	1
2.	Comparative Analysis of IT-based Equity Stocks Based on Volatility Using LSTM Technique	Dr. Deepali M. Gala Dr. Bhaskar V. Patil and Dr. Rajesh U. Kanthe	9
3.	Trading in the Foreign Exchange Market: A Critical Review Of Literature	Mr. Jayant S. Kadam and Dr. Bhaskar V. Patil	18
4.	Analysis of stock market data using Principal component analysis & CART	Ahmed M. Al-Hammadi and Dr. C. D. Sonar	25
5.	Statistical Survey of Impact of Online Gaming among Youth	Miss. Aparna Shinde, Miss. Pratiksha Jadhav Miss. Shaheen Sayyad	53
6.	A Study on Investment Decisions in Stock Market by Utilizing Predictive Model	Dr. Bhaskar V. Patil, Dr. Deepali M. Gala and Manisha Shinde-Pawar	59
7.	A Comparative Study of Data Mining Classification Techniques for Predicting Soil Fertility: Review	Miss. Ashvini G. Patil Dr. Sampada S. Gulwani	66
. هي	A Conway-Maxwell-Binomial distribution for modelling cluster binary responses	Rahul Ramlalit Tiwari	73
9.	Study of Machine Learning for Rule based Expert System	Dr. J.S. Jadhav	79
10.		D.C. Falle, Dr. J.S. Jadhav	85
11.	Study of Graph Theory based Machine Learning	S.U.Yadav, Dr.J.S.Jadhav	92
12.	To Study the Car Price Prediction Using Machine Learning Algorithm	Miss. Anuja Kumbhar	100
13.		Mr. Lohar Ganesh Ananda	109
14.	Application of Chi-square test: Physical Health- Fitness- Diet	Sanjay Karande and Mugdha Tembe	121
15.	Prediction of Water Quality by using Data Mining Techniques	Miss. Aishwarya Yalvatkar	129
16.		Shashi Rekha B, Manasa B Gowda, Chaithra N	135
17.	A statistical study of analysis of India Gross Domestic Product	Miss. Aishwarya G. Desa	e cop

Principal Ramniranjan Jhunjhunwala College, Ghatkopar (W), Mumbai-400086.

A CONWAY-MAXWELL-BINOMIAL DISTRIBUTION FOR MODELING CLUSTER BINARY RESPONSES

Rahul Ramlalit Tiwari

Ramniranjan Jhunjhunwala College of Art, Science and Commerce, Mumbai, Maharashtra Email: rahultiwari@rjcollege.edu.in

Abstract:

In cluster binary response analysis, the Binomial model is not suitable due to the interdependence of the data. In such cases, the Beta-Binomial (BB) model is recommended. An alternative to the BB model is the Conway-Maxwell-Binomial (CMB) distribution. This article focuses on the maximum likelihood estimation of the parameters of the CMB model. There is no analytic solution for likelihood equations, so using a self-written R program based on NR method is used to estimate MLEs iteratively. A simulation study has been conducted to see the behavior of the MLEs.

Keywords: Conway-Maxwell- Binomial distribution, Binomial model, MLEs, NR method. **Introduction:**

Cluster binary response refers to a type of data that consists of binary outcomes (i.e., either 0 or 1) for multiple observations within a cluster or group. The observations within a cluster are often dependent or correlated, and as a result, traditional binary response models like the Binomial distribution may not be appropriate for analyzing this type of data. In such cases, alternative models like the Beta-Binomial is often used to capture the dependence structure among the observations within a cluster.

In toxicological studies, the number of occurrences of a certain kind of event in a litter of fetuses which may be death, malformation or mental disorder is recorded. In this example, outcome of an experiment is binary in nature. Mainly, the occurrence or non-occurrence of an event where event can be death of fetus or occurrence of certain malformation in fetus and response of interest is total count of such events. The response variable can be expressed as the sum of Bernoulli random variables for each object under study. To establish this in notation, suppose there are k litters or groups having mi number of fetuses or objects in ith group. Define i = 1, 2, \cdots , k; and j = 1, 2, \cdots , m_i.

 $X_{ij} = \begin{cases} 1; if j^{th} subjects how sthe occurance of an event in ith group. Certified as 0; otherwise TRUE COPY the second state of the seco$

Thus $Y_i = \sum_{j=1}^{m_i} X_{ij}$ represents the total number of occurrences of an event in i^{th} group,

Department of Statistics, S. G.M. College, Karad

Principal Ramniranjan Jhunjhunwala College, Ghatkopar (W), Mumbai-400086. Application of CMB distribution in cluster binary response data can be found in various fields, for e.g, In clinical trials, cluster binary response is observed when track the success or failure of a medical treatment on different patient groups is considered.

In this paper I consider a generalization of the Binomial distribution to a twoparameter distribution which is known as Conway-Maxwell-Binomial (CMB) distribution [2]

The CMB distribution consists of an extra parameter, which we denote by ϑ , and which governs the rate of decay of successive ratios of probabilities such that $P(Y = y - 1)/P(Y = y) = \frac{1}{\theta} \left[\frac{y}{m-y+1}\right]^{\vartheta}$. The CMB distribution is appealing from a theoretical point of view since it belongs to the exponential family as well as to the two-parameter power series of distributions family. As such, it allows for sufficient statistics and other properties to be elegantly derived [2].

The parameter estimation of the CMB model using the maximum likelihood method brings some challenges, since there are not explicit solutions for the maximum likelihood estimation (MLE) and it is necessary to use iteration methods. Thus, the main objective of this study is to present to estimate the parameters of the CMB model. A simulation study has been conducted to see the behavior of the MLEs.

The CMB distribution and its properties:

A random variable Y is said to follow binomial distribution if assumes only non- negative values and its probability mass function is

$$P(Y = y) = \begin{cases} \binom{m_i}{y} p^y (1 - p)^{m_i - y} \\ 0 ; \quad Otherwise \end{cases}; \ y = 0, 1, 2, \dots, m_i; 0$$

The Conway- Maxwell- Binomial (CMB) distribution is a convenient two parameter family that generalize the binomial distribution and models both positive and negative association among the Bernoulli r.vs.

The probability mass function (pmf) of the CMB distribution [3] is denoted by $Y \sim CMB(m_i, p, \vartheta)$ and given by

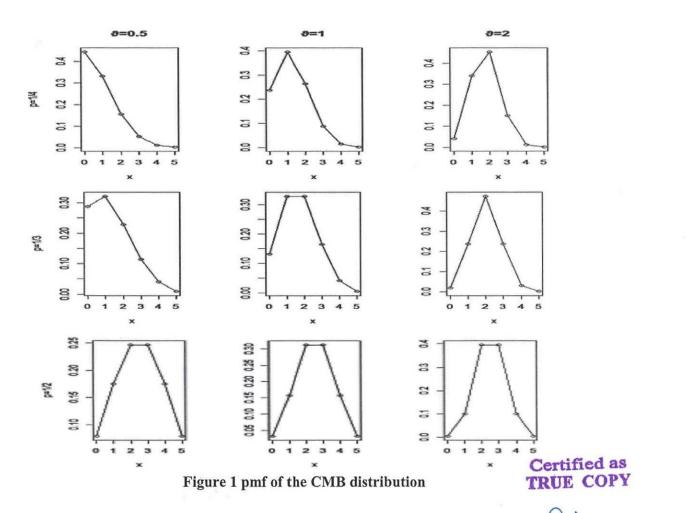
$$P(Y = y) = \begin{cases} \frac{\binom{m_i}{y}^{\vartheta} p^y (1 - p)^{m_i - y}}{Z(p, \vartheta)} ; y = 0, 1, 2, \dots, m_i ; 0$$

Department of Statistics, S. G.M. College, Karad

Principal Ramniranjan Jhunjhunwala College, Ghatkopar (W), Mumbai-400086.

TRUE COPY

74


ISBN - 978-81-956739-9-5

Where $Z(p, \vartheta) = \sum_{k=0}^{m_i} {m_i \choose k}^{\vartheta} p^k (1-p)^{m_i-k}$

In particular , when $\vartheta = 1$, the pmf in equation (2) reduces to the binomial distribution, when $\vartheta > 1$, it represent under-dispersion and when $\vartheta < 1$ over-dispersion with respect to the binomial distribution.

The CMB distribution can be expressed as a sum of equi-correlated Bernoulli random variables [3]. The Compossion distribution [1] is approximated to the CMB distribution when m is getting large.

The following figure 1 presents the pmf of the CMB distribution for m = 5 and different values of p and ϑ .

Principal Ramniranjan Jhunjhunwala College, Ghatkopar (W), Mumbai-400086.

Department of Statistics, S. G.M. College, Karad

Considering the reparameterization, $\theta = \frac{p}{1-p}$, the pmf of the CMB distribution is given by

$$P(Y = y) = \begin{cases} \frac{1}{Z(\theta,\vartheta)} \frac{\theta^{y}}{[y!(m_{i}-y)!]^{\vartheta}}; y = 0,1,2,\dots,m_{i}; \theta > 0; -\infty \le \vartheta \le \infty \end{cases} (3) \\ 0; \quad Otherwise \end{cases}$$

Where $Q_i = Z(\theta, \vartheta) = \sum_{k=0}^{m_i} \frac{\theta^k}{[k!(m_i-k)!]^\vartheta}$

Maximum Likelihood Estimation of the Parameters:

Let (Y_1, Y_2, \dots, Y_f) , be independent vectors, where each vector has exchangeable binary components.

The Likelihood function $L = L(\theta, \vartheta | y_1, y_2, \dots, y_f)$ will be

$$\begin{split} L &= \prod_{i=1}^{f} P\left(Y = y_{i}\right) \\ &= \prod_{i=1}^{f} \frac{1}{Q_{i}} \frac{\theta^{y_{i}}}{\left[y_{i}\right]\left(m_{i} - y_{i}\right)!\right]^{\vartheta}} \end{split}$$

The log-likelihood function is

 $l = \sum_{i=1}^{f} \{ y_i \log \theta - \vartheta \log[y_i! (m_i - y_i)!] - \log Q_i \}$ (4)

The partial derivatives are given by

$$\frac{\partial l}{\partial \theta} = \sum_{i=1}^{f} \left\{ \frac{y_i}{\theta} - \left(\frac{\sum_{k=1}^{m_i} \frac{k \theta^k}{[k!(m_i - k)!]^{\theta}}}{Q_i} \right) \right\}$$

$$\frac{\partial l}{\partial \theta} = \sum_{i=1}^{f} \left\{ -\log[y_i!(m_i - y_i)!] - \left(\frac{\sum_{k=0}^{m_i} \frac{\theta^k \log[k!(m_i - k)!]}{[k!(m_i - k)!]^{\theta}}}{Q_i} \right) \right\}$$
(5)

Solving the equations (5) and (6) simultaneously, mle of θ and ϑ can be obtained.

Certified as TRUE COPY

Department of Statistics, S. G.M. College, Karad

Principal Ramniranjan Jhunjhunwala College, Ghatkopar (W), Mumbai-400086. 76

However, these likelihood equations cannot be solved analytically. Hence an iterative method such as Newton-Raphson (NR) iterative method, has to be used to solve likelihood equations. I have written R program to solve the equations (5) and (6) using NR method.

Simulation Study:

In this section a simulation study has been conducted to see the performance of the estimated parameters. Here, we have generated random observations from CMB with different cluster sizes K = (20, 50, 80, 150, 200) and sample sizes $m_i = 1, 2, 3, 4, 6$ respectively with different combination of true values of parameters θ and ϑ . By using inverse transform technique observation from CMB distribution are generated. Finally, MLEs are computed based on 1000 iterations using self-written R program. Bias and MSE of the parameters given in the Table 1, they are computed using the following formulae.

Bias
$$(\hat{\theta}_1) = E(\hat{\theta}_1) - \theta_1$$

MSE $(\hat{\theta}_1) = E(\hat{\theta}_1 - \theta_1)^2$

 $\widehat{\theta}_1=(\widehat{\theta},\widehat{\vartheta})$ is estimated parameter and $\theta_1=(\theta,\vartheta)$ is true parameter .

Here; R = Number of replications = 1000

	θ	0.5	0.6	0.7	0.8
θ					
0.1	Bias $(\hat{\theta})$	-0.001582	-0.002726	0.001176	-0.002933
	$MSE(\hat{\theta})$	0.001306	0.000886	0.000819	0.000781
	Bias (ŷ)	0.018667	0.003190	0.001036	0.004220
	MSE (9)	0.007497	0.005779	0.003995	0.003396
0.2	Bias (θ)	0.000097	-0.008027	-0.003478	-0.000092
	$MSE(\hat{\theta})$	0.001169	0.000965	0.000942	0.001044
	Bias (9)	-0.010122	0.022223	0.004813	0.002248
	MSE (9)	0.005787	0.005399	0.005244	0.003760
0.3	Bias $(\hat{\theta})$	-0.003050	-0.005379	000477fied TRUE CO	as -0.001319

Table 1. Results of Simulation

Department of Statistics, S. G.M. College, Karad

Principal Ramniranjan Jhunjhunwala College,7 Ghatkopar (W), Mumbai-400086.

	$MSE(\hat{\theta})$	0.001092	0.000868	0.001252	0.001293
	Bias $(\hat{\vartheta})$	0.003555	0.001344	-0.007627	-0.002689
ſ	MSE $(\hat{\vartheta})$	0.007814	0.005436	0.005156	0.003559
0.4	Bias $(\hat{\theta})$	0.004792	-0.000239	-0.001968	0.003344
	$MSE(\hat{\theta})$	0.001161	0.001079	0.000778	0.001069
	Bias $(\hat{\vartheta})$	-0.000503	0.013884	0.024210	0.000919
	MSE (9)	0.005840	0.004409	0.005784	0.004501
0.5	Bias $(\hat{\theta})$	0.001287	-0.004993	0.002772	0.003979
	$MSE(\hat{\theta})$	0.001187	0.001363	0.000955	0.001239
	Bias (9)	0.007625	0.014888	0.000682	0.004635
	MSE (ŷ)	0.009036	0.005867	0.005870	0.004729

From the table we can observed that estimated parameters are quite closer to true parameter and MSE is much smaller.

Conclusion and FutureWork:

In this study, the Conway-Maxwell-Binomial (CMB) distribution is applied in cluster binary data. The parameters are estimated using the method of maximum likelihood estimators. A simulation study has been conducted to see the behavior of the MLEs.

A future prospect of this study, the appropriateness of the fitting distribution is carried out based on the goodness of fit test and some information criteria and applies to the real-life data set and compare with other appropriate distribution.

References:

- 1. Conway, R. W. and Maxwell, W. L. (1962): A queuing model with state dependent service rates. Journal of Industrial Engineering 12,132-6
- 2. Kadane, J. B. (2016): Sums of possibly associated Bernoulli variables: The Conway Maxwell-binomial distribution.Bayesian analysis, 11(2), 403-420.
- 3. Shmueli G., Borle S., and Boatwright P. (2005): A useful distribution for fitting discrete data: Revival of the Conway-Maxwell-Poisson distribution, Applied Statistics, 54(1), 127-142.
- 4. George, E. O. and Bowmen, D. (1995): A full likelihood procedure for analysing exchangeable binary data. Biometrics, 51, 512-523.

Department of Statistics, S. G.M. College, Karad

Certified as TRUE COPY

Ramniranjan Jhunjhunwala College, Ghatkopar (W), Mumbai-400086.

78

Rayat Shikshan Sanstha's	
SADGURU GADAGE MAHARAJ COLLEGE, KARAD	
(AN AUTONOMOUS COLLEGE - Affiliated to Shivaji University, Kolhapur)	
Accredited 'A ⁺ ' with CGPA 3.63 by NAAC = ISO 9001 : 2015 Certified & NAAC Designed Mentor College	
Demontry and all Statistics	
Department of Statistics	
INTERNATIONAL CONFERENCE ON	
Statistics And Data Science (SDS-2023)	
Sponsored by	
Sponsored by RASHTRIYA UCHCHATAR SHIKSHA ABHIYAN (RUSA)	
CERTIFICATE	
This is to certify that, Prof./Dr./Mr./Ms. Rahul Ramlalit Tiwati	
of RJ college of Atts & Science.	
has Participated/Presented a Paper (Oral / Poster) entitled A conway - Maxwell-	and the second
	CON CASE
Binomial distribution for Modeling cluster Binary Responses.	1 300
in International Conference on Statistics and Data Science (SDS-2023) organized by	
Dept. of Statistics , Sadguru Gadage Maharaj College, Karad on 24 th and 25 th February 2023.	10 B 100
As ani	「「「「」」
S.P. Patil Same Menne Dr. Mrs. S. P. Patil Mrs. S. V. Mahajan Prin. Dr. M. M. Rajmane	(CON)
Dr. Mrs. S. P. Patil Mrs. S. V. Mahajan Prin. Dr. M. M. Rajmane	10.0

Certified as TRUE COPY

Principal Ramniranjan Jhunjhunwala College, Ghatkopar (W), Mumbai-400086.