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EXISTENCE RESULTS TOR SOLUTIONS TO
DISCONTINUOUS DYNAMIC EQUATIONS ON TIME SCALES

SANKET TIKARE® AND IGUER LUIS DOMINI DOS SANTOS

{Commumicated by C. C. Tisdell)

Absiract, In this paper, we present three resulis about the existence of solutions to discontinuous
dynamic¢ equations on @me seales, The existence of Carathéodory type solution is produced
using convergence and Arzela—Ascoli theorem. The Banach’s fixed point theorem is used Lo
investizate the existence and uniqueness of selutions and using Schacfer’s fixed point theorem
we establish the existence of st least ane solution. Our results generalizes and extends some
existing theorems in this field.

1. Introduction

The study of dynamic equations on time scales unify and generalize the theory of
differential equations and difference cquations, it helps to avoid studying resulls twice.
The concept of time scale and dynamic equations on time scales was first introduced
by Hilger [12] in his Ph.D. thesis. In the following years, it was realized that dynamic
equations on lime scales can be applied to hybrid dynamical systems. i.e., in mathe-
matical modelling of any phenomena that involves both continnous and discrete data
simultaneously. There have been significant developments and a good deal of research
activity devoled to this field. Hence, it become a quite interesting and active research
area for researcher across the world. An exhaustive study of dynamic equations on time
scales has been done by many authors [ 1], [4], [6], [7] [14], [15], {16], (23], [26]. In
recent years, discontinuous dynamic equations on time scales under various conditions
have been studied independently by Gilbert [5], Slavik [23]. Satco [20], [21], Santos
fis], and Tikare [24].

This paper is concerned with some existence results for discontinuous dynamic
equations on an arbitrary finite time scale interval T such that min T = ¢ and maxT =
b. We consider the following dynamic problem,

A= flrx(n), dae it € [a,b)p
1.1y

x{a) = xp:

Marhenatics subfect classification (2010): 26ET9), 34A36, 34N05.

Kewwords and phrases: Existence ol solutions, dynamic equations, thne seates, Carathéodory [unction,
fixed point theorem.

* Corresponding author,

i TR PV Zuered

la College,

( : 89
Paper DEA- 12406
Certified as
TRUE COPY
Princ
Ramniranjan Jhunjhiunwa

Ghatkopar (W), Mumbai-400086.



s

\./

Q0 S. TIKARE AND I. L. [J. SANTOS

where f:fa.blp X R — R, x:Ja.byr — R”, and »2 is the delta derivative of x. Here
the right hand side function f is integrable and possibly discontinuous. We do nat
asswime any sort of continuity about the function f.

In this paper, we shall present three existence results for solutions to dynamic
problem (1.1}. The first one involves A-Carathéodory function introduced by Gilbert
in [»] and uses the Arzela—Ascoli theorem, while in the second one. we shall seek
bounded A-measurable solutions, the proof rely on the idea due to Tisdell and Zaidi

[26]. In the third one we obtain existence of at least one continuous solution using
Schaefer’s fixed point theorem.

2. Preliminaries

In this section we provide some basic concepts and results which reader shall find
usclui in the sequel. An excellent introduction to the topics of time scales calculus and
its applications can be found in [2], [}

A time scale T is an arbitrary nonempty closed subset of R, with the subspace topology
inherited from the standard topology of . Foran interval {a.b) C R, {a.b|7 = a0, b|NT
denotes time scale interval with minT =« and maxT =b. ie., [a,b}z={reT:ag
t < b}. Fort €T, we define two operators, 6 : T — T as ot) = inf{s € T:5 > t}.
called the forward jump operatorand p: T — T as p(r) =sup{s € T: s < 1} called
the backward jump operator. We classify the points in a time scale T in the following
way: A point 1 € T is right-scattered if o(s) > r; while it is left-scattered if p{1) <1.
A point 1 € T is right-dense if ¢(t) = 1; while it is left-dense if p(z) =¢. A point
(€ Tisdenseif p(t) =1=0o(r); while it is isolated if p(r) <r < &(r). The graininess

Junction {1 2T — {0,c0) is defined by (1) = alr) —1.

If b is left-dense. then our time scale interval is [a.b]p and if b is left-scattered,
then it is {a.b)p. So without any restriction throughout this paper we take la.b)p.
Ly (la,b]7:R4) denotes the set of Lebesgue A-integrable functions from [a,bly to R, .
C{{a. b7 R") denotes the set of continuous functions from [a, b}y to R". AC([a, bjp; R")
denotes the set of absolutely continuous functions from [a.b)7 to B". M([a.b]z;R")
denotes the set of A-measurable functions from [o, b7 to B, BM([a, b}z R") denotes
the set of bounded A-measurable functions from [a,b]y to R".

We observe that AC([a. bjr;R") € C{[a, b} R") € BM (la, b3 R7) € M{[a, b]m; R").
For x &€ R", llx]| denotes the Enclidean normn ol x and we define sup-norm on the set
BM{|a.birsR™) as |ixllo = sup ||).(t)|| On the lines of Tisdell and Zaidi [26] we

1€l b
define the generalized Bielecki's norm. called TZ-norm on the space BM ([a.b]m:R")
xif
as Hx(r)]]ﬁ = sup ”(—)” We note that the sup-norm || - |l and the TZ norm

refab]e €8 (t,a)
-5 are equivalent. Since (BM {[a,b}z;R").1|-llo) is a Banach space, it follows that
(BM {[a.blz; "), || -||g) is also a Banach space.

DEFINITION 1. [1¥] A function f: [a,bly — B” is said to be absolutely contin-
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N
wons if given £ > 0 there exists § > 0 such that 'y [|/(bi) — fla:)|| < & whenever
i=1
N Al
a; < by and {[ay, bi)z}._ | are disjoint intervals obeying N (bi—a;) < 8.
i=1
A function f: [a.b)p — R is called an arc if it is absolutely continuous.
The following Fundamental Theorem of Calculus for vector valued functions is estab-
lished in {1£].

THEOREM L. A function f:|a,blz — R" is an arc if and only if the following
assertions are valid:

(i} jor A-ae. £ €la,b)y the function [ is A-differentiable and el ([a.b)T;R") ;

(i) for each t € [a,bly we have
Sy = fla)+ FA(s5)As.
f( ) f( ) /;c!.,f)'g ( )

DEFINITION 2. Anarc x: ju.b)p — B is said to be a selusion of (1.1) if it satis-
fies (1.1). A solution of (1.1) is A-Carathéodory solurion if the function f in (1.1) is
A-Carathéodory function,

DEFINITION 3. [2] A function f : {a,blr — R is said to be A-Carathéodory
Junction if it satisfies the following conditions:
(C-1) The map 1+ f(r,x) is A-measurable for every x & R";
(C-ii) The map x+— f(7.x) is continuous A-a.e. 1 € [a,b]7:
{C-iii} For given r > 0 there exists a function h, € L; ({a.lJ]T;R+) such that ”f(rx}n <
h(r) A-ae. € [a,blp and ||x{| < r-+ ||xol].

DEFINITION 4. [2] A function x: [a,b)p — R" is said to be rd-continuocus if it
is continuous at every right-dense points in [o, &) and its Jeft sided limits exist at left
dense points in {a.b)r.

The set of all rd-continuous functions x:ja, &)p — R will be denoted by Cy ([a, b)q;;[%") .

DEFRINITION 5. [21 A function B : [a.b]y — R is said o be positively regressive
W i+u{B) >0 forall f € [o,blr.
The set of all positively regressive lunctions f : @, by — R will be denoted by %7 .

DEFINITION 6. {2] The exponential function eg(-.a) is defined as
ot
exp (/ B(s}ds), if r€ably, u()=0
Ry
ep(t.a) =
" Log{l+ p(s)p(s
exp(/ g -:L'E (}v)ﬁ(s)) As), if 7¢lably, p()>0;
Ja §

Certified as
TRUE COFPY

|\ _‘I .Ilr.

mniranjan Jhunjiunwala College,
R:;jhatkop.!a.l' (W), Mumbai-400086.



Ho”

S’

g2 5. TIKARE AND T, L. D. SANTOS

where Log is the principal logarithm function.
For Be &%, eg(t.a) >0 forall 1 € {a,blp and egla,a) =1.

PROPOSITION 1. (Measure continuity) [17] Let f:ja,b]t — [0, +o=) be a Lebesgue
A-integruble function. Given £ > 0 there exists O > 0 such that, if A is a A-measurable

subset of [a,blr with fta(A) < 8, then / fs)Ar < &.
A

THEOREM 2. (Arzela—Ascoli theorem) [Y] A sequence of functions (x;) that is
uniformly bounded and equicontinuous in |a, by contains a subsequence (v;) which
converges uniformly in la,b)t.

THEOREM 3. {Banach's fixed point theorem) [22] Let {X;d) be a Banach space
and F:X — X be such that d(F(x),F(¥)} € o d{x,y) for 0 < & < 1 and for all
x.y€X. Then F has a unigue fixed point in X .

DEFNITION 7. [¥] Let X and ¥ be two metric spaces. A mapping F X —Y
is said (o be completely continuous if it is continuous and the image of each bounded
subset of X is contained in a compact subsetof Y.

THEOREM 4. {Schaefer’s fixed point theorem) [22] Let X be a Banach space,
F X — X be a comtinuous and compact mapping. Assume further that the set

T={x€X :x=AF(x)forsome A € [0, 1}}

is bounded. Then, F has a fixed point.

3. Main results
We introduce the following hypotheses. which are assumed in this paper hereafter:
(H1) The function f{r,x) is continuous for A-a.e. { € [a,b]7.

(H2) The function f(f.x) is A-measurable [or each A-measurable function x: [a,b)p —
R

(H3) For given r > 0 there exists « function i, € Ly ([a, b]p: R} such that
| £ < Be()
for A-ae. t € {a, by and ||x]] < r+ |lxoll.

(H4) There exists a positively regressive and rd-continvous function 8 : [a.0]r = R
such that

[|F(rx) = Fle.)| < Bl =]

for A-ae. 1 € {a,b]y and forall x.v € R".
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(H5) There exist a constant L > 0 and a fanction ¢ € Ly (la, b7 Ry ) satisfying
A0l < Ll +c()
for A~ue. t € [a.b)r and forall x € R",
The following lemma establishes equivalence of dynamic probliem (1.1) as delta integral

equations. The result is equivalent to ideas in {14, Lemma 3]. The proof is, therefore,
omitled.

LEMMA 1. Let f:la,bly x B" — R" be an integrable function.

1. Ifan are x:la,bly — R® is a solution of (1.1), then it follows that
x{t) =xp+ f(s.x(s))As Vi€ lab]y. 3.

2. Everyarc x: [a.bly — R" obeving (3.1) is a solution of (1.1).

It should be noted that the integral means A-Lebesgue integral. For detail see [5],
[11]. Using 1%, Theorem 5]. in Theorem 3 given below, we obtain a Theorem like [ 10,

. Theorem 1] to discontinuous dynamic equations on time scales.

THEOREM 3. Suppose that f : |a.bly x R" — R" satisfies hvpotheses (H2) and
(H3). In addition assume there is a sequence (fi) of A-Carathéodory functions such
that /[ Si(s.z(s))As — [ S {5.x())As. where (z) is the sequence of arcs con-

Serr ) . [n,!}"

verges uniformly 1o x on |a.b)y. Then there exists by € |a,b)y \ {a} such that the
dynaniic problem (1.1) has a A-Carathéodory solution x on [a,b)t.

Proof. If a is right scattered point in [a.b]y, then take &) = o(a) and whence
[a.b1)r = {a}. Definethe arc x: [a,b) |y — R” by x{a) = xp and x(b1) = f(a,x{a)) 1 (a)
+x(a). Then

x(by)—xl(a) = fla,x(a)}pula):

x{b) —x(a) )
W —f(a,.\(a)).

Thatis, (1) = f(t,x(t)) for 1 € [a,by)7 = {a}. Thus x is a A-Carathéodory solution
o (1.1).

For o{a) = «, let » > 0 be an arbitrarily fixed. By Proposition I, there exists by €
fa.b)r\ {a} such that

/ he(s)As < n (3.2)
i”'—bl)'f

Since (f,) is a sequence of A-Carathéodory functions, by [15, Theorem 3], there is a
sequence of arcs x; ¢ {a.by)pr — R, by € [a,b)r\ {a} obeying (1.1}. Thus, each x; is

Certified as
TRUE COPY

\ "|-"I'I

mniranjan Jhunjhunwala College,
Efﬁmz:]u (W), Mumbai-400086.
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a A-Carathéodory solution of (1.1) on [a,5))7.
Therefore, by Lemma 1 for 1 € [u,bi]y and for each i € M,

x{t) = xo+ Ji{s,x:{s)) As

Hal)y

(]| < lsoll + ” [ st

< |lxg |l -+ - (8)ds.

Habn )t

Sl [ (s 0s) s

which, by equation (3.2) yields ||x:(2)|| < fxoll+r, r> 0.
Hence {x;) is uniformly bounded on [a,by]7.
For 11,47 € [a, b}y we have

xi{t) = xi(r2) =‘/{;” )_ﬁj‘}(é',X;(s))AS—j[‘m ) fi{s.xi(s))As

fr o] < [ Il [ ntos

=~ Hence, for any given € > 0, from Proposition 1, there exists & > 0 such that 1,1 €
" a, byl and Jr — 23] < & imply f h(s)As < £.
Ha2)7

||xi(r1) = xie2)

Consequently. ||xi(n) —xi(2)] < €. Therefore (x;) is equicontinuous on [a,b)y.
By the Arzela—Ascoli theorem, there is a subsequence (v;) of (x;) which converges

uniformly on [a, b}t to an arc x: [a,b1]7 — R". We show that this » satisfies dynaric
equation (1.1}.

Since xj(a) = xp, x{a) = lim y;(a) =x¢. Let t € [a,b]r be fixed. Then by hypothesis,
jw—nze

j}}ill /{t” Tf;\ (A ZA ) h/l;“)—’j'(s,x(s))AS,

where (z) is a subsequence ol (y;).

Since z(1) = xg +/{ ) fi(s.2(s5)) As and Jim zi(1) = x{¢), it follows that
ad )y O

lim (A‘g-l- _[ ﬁ»(s.z;c(s))m> = x(t},
k—seo fert )
and we obtain

ﬁj xo—i-f a A(s))As = x(f),

which by Lemma | proves that x is a solution of (1.1). This completes the proof. T

Theorem 6 given below establishes a result corresponding to [26, Theorem 3.4] to dis-
continuous dynamic equations on time scales.
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THEOQREM 6. Lef the hvpotheses (H2), (H3), and (H4) hold. Then the dynamic

equation (+.1) has a unique solution. Moreover that solution x satisfe ||| < ||lxol]
M {|h g for some positive constant M.

Proof. Define the TZ-norm || - || on the space BM (la.b]w: R?) as

o lx@)]l
Il = tES[SE] ep(r.a)’

where B : [a.b]7 — R is regressive, rd-continuous function. Then [lx(1)|| < |Ixllg ep (¢
Vi€ la.blr.
Let 1 BM (ja, ble:R") — BM ([a, b)7:R"} be defined by

(Fx)(t) = xp+ E. f{s.x(s)) As. t € la, by

o)y

Let ¥,z € BM([a.b]p:R"). Then

(Fx){1) zxo—i—/{l ”‘"f(.s‘._x.l(.s‘))As, t€la. bt
(Fx3)(8) = xo -+ { l)ﬁf(s.xg(s))As, i € |a.bl.

Therefore

which. by (H4), gives

H(F) - P @ < | B ) =) jas

fra,

Then
[l(Fax }(j; (::ngz){t)li < (i — f[r B0 o) -0
< iy oy B epls.0) s —sally
= Cﬁ(lﬂ i;”)? ef(s,a) ||y —x2lip & by equation (21} [
- |- sl
Thus ‘ -
O L0 < [1m i =l

_i..

.a),

13
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and then

[(Fe)) ) = (Fra)(0) [ ]
Su _ g sH 1 - ¥ _—--2
re[a..[;]? eg(f,a) ":[”-gi"-: eplioa) [lxy = xallg
1
= [l%m] il.\] """.X:J_IE'g
= o [lx;~xallg, where a=1-~ Xy <1
Hence

“F_\'l ——F_\‘f_:”{B Safu—xlsg and O0<a<l (b#a).

The Banach's fixed point theoremn assures that the function F has a unique fixed point
in BM ([a, b]r;R¥) . This yields that (1.1) has a unique solution.
Now for ¢ < b from (3.1) dividing throughout by eg(?.a), we get

O ol
elr.a) t’;s(! a C’ﬁ(f,(l)]{ael) £ (s, %)) [ s

Hypotheses (H3) yields

M il 1 / boll_, 1 f
he($)As < :
ﬁ(f a) C’B(f a) eg{t,a) Sy wls) eplt,a) "B llg Cﬁ s-a)A
< ol P

ol eyt 18, 00008

ol / %0
= ¥ 2 , \<,_
estay TIels  , calsalas oy HIllp(o = a)es(b.a).

Thus

PO ol
eglt.a) cﬁ(r,z)

where M = (b —a)ep(b,a). Therefore

+liellp (0 — adep(b.a) < |lxoft +Ml1iclg,

xllg < llxoll + M {5l g,

which shows that the solution x is bounded with respect to ||+ ||g. This completes the
proof. O

In the next theorem we use Schaefer’s fixed point thecorem (o establish the existence
of at least one solution to {1.1). Theorem 7 joins Theorem [15, Theorem 5] on the
existence resulls of at least one solution to (1.1).

THEOREM 7. Suppose that hypotheses (H1), (H2} and (H3). Then the dvnemic
problen (1.1) has at least one contimtous solution,
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Proof. The proof is based on the idea to transform the dynamic problem (i.1) into
a fixed point problem. Define the operator F : C([a,b]r;R") — C([a, 5]z R") by

(AW =+ [ [sxs))as (3.3
t€la,blr.

We use Schaefer’s fixed point theorem. In view of Lemma (1), the fixed points of F
will be solutions to the dynamic problem (1.1).

Step 1. F is conlinuous.

Let (i) be asequence in C([a, b}y R") such that [|eer. —2elig — 0. Thence {|ug —ullo —
0 and for 1 € [a, bly we have

|(Fa)0) — (Fu) ()] = ]

-[[u,!}? S (s.{s)) bs — /[ Fls,u(s))As

at)r

< fop W) = £ ) s
< /[“»b)r 17 (s (5)) = fs,u(s))||As

and then

| £ — FH”O < f{“'b)? || 7{s. 06 () — f(s,u(s))]|As.
As per {H1),

W) = Flu@)|| =0 A-uet €fa,bly

we may conclude that || Fuyx — Fullo — 0, and then ||Fuy — Fullg — 0.
Thus F is a continuous map from C([a,b]7;R") o itself.

Step 2. £ maps bounded sets into bounded sets in C([a, bl R").
Let €2 be a bounded subset of C{[a,b]7:R"). Hence there exist a constant k£ > 0 obey-
ing |ullo< k. foral e Q. fueQ,

[Pl =

g+ A " Fls,u(shAs

< il +‘

[, e

<hol+ [ rsullas<lboll+ [ (L) +e(9)as

< |§.\‘0E§+/ LE|u]|UAs+] c($)As < |lxoll+-L k{b —H)+/ c(s)As
o) {a.b)r led}e

1Fullo < llxol + L k(b — a) + j{ ,, s

Therefore F{Q) is uniformly bounded.

Step 3. F maps bounded sets into equicontinuous sets in C(ja, blp;R").
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Let Q be a bounded subset of C{[a,bl7:R") as in step 2. Let 1,1y € [a,blp, £ < 1.

Then
[(Fu)(6) — (Fu)(e)|| = llf{rzrﬂ?f("’"“(‘?})m < j[;‘”)
/{ (Uns)l+cls))as

[ F(s.uls)) || as

[ Lhulo as+
fray )

< <

~

c(s) As

ez

ng(z;—z)JrfE”) c(s) As.
W

Let & > 0 be given. Then by Proposition 1, there exists a § > 0 such that 7,1, € {a,b]y
and |1 — ;1 < 8§ imply

|(Fu)()— (Fu)(n)] <& VneQ

Thus the equicontinuity of F(€) on {a.b]¢ follows.

Then the Arzela—Ascoli theorem assures that the set #(Q) is relatively compact, and
therefore the map F : C([a, b} RY) — C([a, b}z R") is completely continuous.

Now consider the set T C C({a,b}:R”) given by

T ={x e C([a,bjp:R") : x = AFx for some 4 € [0,1]}.

We note that

-[lffsf ¥r

fx T, it follows that

[lxall

Leg(s.a) As=ep(t,a)—land |jxoli = sup ———— = |Ixg].
relab]r t’.’[_(t,a)

x(t} = Axp+ A : Fls.x{s))As

Lt

and then

xo+ E;u}? f(s.x(s)) As
lixlie = A Fxfle <[Pl = !Cf;zlgj — e;{r,a)
o H ) s
Sholer s St
< fas)r {L“x(s)” +els) }As
< X(}IiL-i—[esi(L:‘%T T
/[ ,L‘)L(Sf‘z)%&s+/ N c(s)As
= |xoll +IES[:£3? el c*:,(; s fee)
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/ Le(s,a)lixls. a5+ c(s)As
< ol + sup 2o fa)z

< i

réfa b er(t.a)

il ectnay~ 1)+ [ cls)as

= llxgff + sup fee ¥

relai er(t,a)
| /E c{s)As
o o _ St )T
—“-\OHTre’;::'gg?{“"cﬁ"(l eL(t,a))+ er(t,a) }
1 ./Ea b~ C(S)AS
< ol + “"-”L(l B e’L(b,fl)) T @
e ap il () As
= [lvoll + [Ixlie (. /[{,.z))TC(A)A“'
Hence
lbelie < xoll ec(b.a) +enlboa) | els)as

Hadyr

. and therefore T" is bounded. As a consequence of Theorem 4 we deduce that F has a
% fixed point u in C([a, b]p; "), equivalently (1.1} has a solution in C{[a,blm:R").
This completes the proof. [
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