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The swaying motion of trees has been the subject of several inves-
tigations, theoretical as well as experimental, by forest scientists.
The reasons for their interest are obviously driven by the losses
incurred in stormy conditions. Another Place where the under-
standing of the equations governing the motion of trees is needed
is computer animation. The reduced set of equations describing
a moving tree will definitely speed up this task, especially when a
large number of trees are involved, Though it is evident that the
swaying motion of trees is a nonlinear phenomenon, surprisingly,
not much effort has been invested in its complete nonlinear anal-
ysis. This work is part of such a program to build and understand
a complete model step by step.

I. INTRODUCTION

Oscillation of trees driven by wind is always a matter of interest
for a broad range of groups, such as forest scientists, - engineers,’
animators,’ etc, Their motivations are different, including mini-
mizing damage in stormy wind conditions, improving the stability
of the structures, or providing better and more realistic visuals, Trees
have a very complex architecture that differs from tree to tree and
shows very irregular behavior under high wind and can thus be cited
as a natural example of the nonlinear system; but, the nonlinear
behavior of this complex system has not been studied much in detail.

The experimental study on the motion of trees has been an
active field of research. Several workers have measured various
aspects of the movement of trees.* They have used various tech-
niques for this purpose, such as usin g alaser for tracking,” measuring
the inclination,  or using motion tracking from videos, ' etc.

Theoretically, the earlier attempts for understanding the sway-
ing motion of trees mainly followed two approaches. First, the tree
was approximated as a cantilever beam with corresponding par-
tial differential equations describing free vibrations of its central
column.'*="* Second, it was depicted as a chimney model consist-
ing of coupled short oscillating sections with restoring forces at the
joints.”* Both these models have been developed with the assump-
tion that trees are a linear system and neither considered nonlinear
restoring forces or even the branched structure.

Since it is known that biological materials exhibit a nonlin-
ear response,’® the absence of nonlinearity in the models has been
particularly striking. Relatively recently, some studies have been
initiated that introduce nonlinearity in the restoring force.” They
considered a basic model consisting of one nonlinear oscillator, and
its effect on the resonance was discussed. While some other study*
introduced a branched structure with nonlinearity in the model, it
has not been analyzed much. In order to understand how branching
helps in dissipating perturbation and increasing structural stability,
Thecke et al.”” studied a Y-shaped branch structure, and Fankem
et al*’ carried out a work to test the pagoda system stability, but
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both did not include nonlinearity. Thus, to summarize, studies were
carried out with a simple nonlinear structure or with a complex
structure but without nonlinearity. Very recently,” an interesting
study was carried out to explore the localization of vibrations in
which a branched structure along with the nonlinear restoring forces
was considered. However, this work did not include the gravitational
force and also did not study the nonlinear dynamical properties of
the system. In summary, while these studies have begun the intro-
duction of nonlinear effects in the modeling of the swaying of trees,
a systematic study with emphasis on nonlinear phenomena is still
lacking, In fact, in Ref. 22, to generate better animation of irregu-
lar motion of trees, a driving with 1/ noise was introduced. In our
work, we plan to explore an alternative source of irregularity that
comes from the nonlinearity of the system.

In our previous work,” we started the development of the non-
linear chimney model in crder to study the swaying of trees. We
made a systematic nonlinear analysis of this model and intend to
compare the findings, if possible, with the experimental data. We
have already discussed the nonlinear properties of this model's basic
building block,” that is, the single element chimney model. We also
discussed approximate solutions to the equations of this model.™
The present study is the next step in this endeavor. In this work, the
focus is not on application to an actual tree but only on the nonlinear
dynamical properties of the model that might be of relevance.

The paper is organized as follows. In Sec. 11, we define the
model. Then, in Sec. ITI, we explain our choice of the range of param-
eters explored in this work. This is followed by Sec. IV of numerical
results explaining the chaotic properties present in this system like
chaos, hyperchaos, and suppression of hyperchaos. In Sec. ¥, the
synchronization between lower and upper segments is discussed.
Finally, we end the paper with some concluding discussions.

il. THE MODEL

We consider the chimney model that was introdnced
previously'™ but with linear restoring forces. We chose this model
because later it would allow us to study branched structures easily.
In this model, a tree is imagined to consist of N short segments con-
nected end to end and perpendicular to the ground or another stiffer
branch, Unlike in Ref. 15, we have considered nonlinear restoring
forces acting between the segment joints and between the first seg-
ment and the base. There is also a gravitational force at the center
of each segment, which is also nonlinear. The equation of motion
for the N segments is derived using the Lagrangian formulation. In
Ref. 23, we focused on this model’s basic building block, i.e., the sin-
gle element model, We found that this simple case showed chaotic
behavior for some values of parameters. We also considered the two
elements case briefly.

In this paper, we plan to study the case consisting of two
elements in more detail. We will analyze this system for a wider
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range of parameters and study the chaotic properties as well as the
synchronization between two segments. It can be thought of as a
generalization of a double pendulum with an addition of the restor-
ing forces at the joints. Also, because the restoring forces in our
model act in the opposite direction to that of the gravitational force,
the equilibrium position here is different from that of the double
pendulum. We have already derived the equation of motion for this
system in Ref. 23. Here, we recall some important steps for the sake
of completeness,
The Lagrangian for two segment system is
1, /m c2, 1o /my o2
L= 51 (T + mz) &+ 51 (T) 23

a4 4 m
+ P6,6; cos(9; — 8,) (?2)
m

—g (? + mz) cosé — gl (_r_nz_z) cos,

I 1 1
- Eklﬁ']z - Zklaﬁf - Ekz(ez -8
1
- Ekzﬂ’z(é’z -8, (1)

where 8, is the angle of the ith segment with the vertical and m; is the
mass concentrated at the center. Here, we presume that both seg-
ments have the same length that is equal to £. Also, &; is the linear
restoring coefficients and ; is the nonlinear restoring coefficients
for the ith element, Rayleigh’s dissipation function for this system,
assuming the dissipation along each direction is the same,
;2 > 2
F= %bez (-5%‘- + ?Ii“ -+t &6 cos(d; — 91)) . (2)

Now, let Q9" and Q2" be the driving forces in 8, and &, direc-
tions, respectively. This driving force is due to the wind, which can
have two different forms, When the direction of the wind is con-
tinuously changing, which resembles the situation of stormy wind,
the Q™ can be expressed by £;fcoswt/2, and when the wind is
flowing from a certain fixed direction, then this drive can be rep-
resented by £;(d + fcos wt) cos §;/2, where d is the average force ina
given direction; we have multiplied by cos 6; as we need the compo-
nent in the horizontal direction, We have studied the single element
system in Ref. 23 by considering both types of wind but here, for
the two element system, we restrict ourselves to the former case
of wind. Thus, Q™ = ¢,fcoswt/2 and QI"™ = ¢,fcoswi/2. Since
£y = £; = £, these drives on each segment will be the same, and
hence, Q" = QI"* = ffcos wit/2.

Now, if we write down the Lagrange equations for the two
variables ) and @, then after some algebra and substituting £ = 1,
my = m; = 1, we arrive at

4. 4
) (5612 sin{f, — &} cos(é: — &) — ggsin 6, cos(f, — &)

4 . 4
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These are the equations of motion for the two segment system.
Generally, the width decreases as one goes up on a tree, This vary-
ing width can be modeled by different masses of the segments. Here,
we have chosen the masses to be the same, which is a valid approx-
imation for some plants, especially when it is divided just in two
segments.

HI. POTENTIAL ENERGY

Cur system involves many parameters. The potential energy
itself has four of them, ki, oy, ks, and a,. Studying the system with a
vazlation in all of them in all possible ranges will be 2 Herculean task.
Clearly, one needs to carefully identify different classes of the ranges
of parameters and study the system separately in different classes. In
fact, the different ranges of the parameters assign different stiffness
properties to the trees and their different parts. As a result, these
classes might in fact lead to a reasonable classification of the trees
and their motion. In the well known example of Duffing’s oscillator,
such a classification does lead to the identification of hard and soft
springs and also to interesting dynamics in different ranges of the
parameters.”

In this section, we analyze the potential energy of the system
in detail by studying their fixed points and their stability. This will
allow us to choose a range of parameters to work with in this study.
For the two segment system, the potential energy, up to a constant,
is

4 (4
Vi@, 6,) = myg (E cos 9!) + Mg (E cost) + ) cos 91)

1 1 1
+ '2“k19x2 + Zklalﬂf + zkz(gz - 91)2
1
+ ;‘kzazwz — o). (5)

Here, we have considered the potential energy due to gravitation and
the potential energy due to nonlinear restoring force. Note, as a mat-
ter of definition, that k; and k, are present in the anharmonic terms
too.

Because of the gravitational term, there are infinite number of
¢ritical points, but we would restrict the values of &s to —x < G <
7. Then, the maximum number of critical points we have is 9. A
critical point (8}, 67) is obtained by solving

av d
— =0 d — =
2, an 26 0

This leads to the equations
- (32’1 + ) gEsin Gy + Kby + ka2 — y(6z — )
— k(8 — 0,) =10, {6)
- ngg $indz + k(6 — ) + kacta (6, — 6,)° = 0.

We obtained the critical points numerically by finding the inter-
sections of the zero level curves of the surfaces generated by these
two equations. As expected geometrically, there are either 9, 5, 3, or
1 critical points for different range of parameter values. Then, the
determinant of the Hessian matrix

2
_ ¥y rv 2V -
aﬂf (01‘-02‘) 39?% (0?.0;) 39236] (ﬂl"’}l‘}

was calculated at these critical points to determine their stability. It
turns out that, as can be guessed from the geometrical reasoning,
when there are 9 critical points four are stable and five are unstable
and when there are 5 or 3 of them, two may be stable.

Inorder to understand the behavior away from the fixed points,
we have plotted the function V(6,,6,) for selected values of ki, k,
@, and @,. Figare 1 depicts four representative shapes of the poten-
tial energy. The undamped motion is bounded in the case of types
{a) and (c}, whereas it is unbounded in the case of type {d). For the
potential energy of the type (b}, the motion is bounded only fora
small range of initial conditions near the origin, As seen from the
figure, the potential energy in (a} is bounded and also can have more
than one attractor. We restrict ourselves to those parameter values
which correspond to the potential energy as in (a). It is clear from
the equation for the potential energy that whenever ks and a)s have
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the same sign, we are assured that the system is bounded. Thus, the
possible combination of parameters for which bounded wetls are
present are as follows:

ki > 0ky >0,y > 0,002 > 0,

k] << 0,k1 < O,CY; < 0,&': < 0,

®)

ki >0,k <00 > 0,05 < 0,

ki <0,k > 0,0, <00, > 0.

In the present work, we cheose to work in the first combination
where restoring coefficients are all positive,

It should be pointed out that it is not the case that only those
potentials that guarantee the bounded motion as in (a) and {(c) are of
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interest for studying the swaying motion of trees. In fact, the poten-
tial of the type depicted in (b) can possibly naturally incorporate the
breaking of trees. But such considerations are premature at this stage
as the breaking of a tree does not seem to be clearly understood as
yet.™"

IV. CHAOTIC PROPERTIES

This section focuses on exploring the chaotic properties of the
two segment system. We study the system numerically for the values
of k's and o’s between 0 and 5. We confine ourselves to a realis-
tic situation where the lower segment is more rigid so we always
fix k, = 5.0 here. We have varied the values for other restoring
coefficients ¢, k;, and @, from 0.1 to 5.0. The damping coeffi-
cient b is kept constant at 0.5. The driving amplitude f takes the

(b)
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* FIG. 1. The potential ehergy of the two segment chimney model, The motion of system is bounded in (2} (ky = 50, = 0.1, kz = 0.8,07 = 0.1) and {g} (ky = 1.0,¢,
= =10,k = 1.0, 0z = 3.0}, unbounded in {d){k; = 1.0, @y = —1.0. K = 1.0,y = ~3.0) and may be either bounded or unbounded in {b) tky = 1.0,y = 20,k

=10,00 = —1.0).
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values 8, 10, 15, and 20, The driving frequency w is varied from 1
to 16, We found a chaotic solution for different parameter values.
As discussed in Subsections IV A~1V C, the Lyapunov exponent is
evaluated, and for a wide range of parameters, it is found to be pos-
itive. In some subregion of this parameter space, we also observed
hyperchaos. Moreover, we observe that when the largest Lyapunov
exponent reaches a certain threshold value there is also suppression
of hyperchaos.

A, Lyapunov exponents

We calculated the Lyapunov spectrum using the algorithm pro-
posed in Ref, 27. In Ref, 23, we had reported the Lyapunov exponent
at few parameter values in order to show the difference between
the approximate truncated gravitational potential”’ vs the complete
nonlinear term. We had observed a qualitatively different behavior.
Here, the Lyapunov exponent is evaluated on a wide range of param-
eters and found to be positive, suggesting the existence of chaas for a
large region of this parameter space. The largest Lyapunov exponent
Ay is found to be maximum around w = 3. In general, the Lyapunov
exponent increases with o), fand decreases with k;, . That is, as
the upper segment becomes stiffer, the system becomes less chaotic,
In general, all these variations of the Lyapunov exponent we have
discussed are more or less smooth. But, once in a while, we observed
a sudden decline in the value of the Lyapunov exponent for high
values of f and at driving frequency « = 8 as seen in Fig. 2, One
implication of this result, for example, is that if the restoring coeffi-
clents of different branches have values spread around this particular
value, then some branches will show more chaotic oscillations and
some less for the same forcing. This is consistent with general obser-
vations. One does observe a variation in the movement of different
branches. Earlier, this would have been naively attributed to the
nonuniformity of the wind.

Generally, the variation of the Lyapunov exponent is mono-
tonic with the parameters of the restoring forces, but there are

scifation.orgljournallcha
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surprises toe. Sometimes we observe some oscillatory behavior. For
example, at k; = 50,0, = 0.1,b = 0.5,f=10,e0 = 6, as &, and oy
are varied, we observed that there are some high-low-high-low
bands of values of the Lyapunov exponent(A, ) as shown in Fig. 3,

B. Hyperchaos

For small values of 's, there exists a positive second largest
Lyapunov exponent (1,), suggesting the existence of hyperchaos in
the system. In general, when the largest Lyapunov exponent exceeds
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0.5, the second largest Lyapunov exponent becomes positive. This
second largest Lyapunov exponent usually follows the first one, i.e.,
the hyperchaoticity of this two segment system increases with an
increase in the values of parameters a; and f, while it decreases with
the rise in the values of parameters k; and a;. Since chaoticity and
hyperchaoticity both increase with or;, which means as the lower seg-
ment becomes more rigid, there is more chaos and hyperchaos in the
system. The peak values of the second largest Lyapunov expenent
(A2) are found to be around @ = 7 or 8. Just as there are high-fow-
high-low bands for &; as shown in Fig. 3, we observed such bands
for A also within the same parameter range.

C. Suppression of hyperchaos

As expected, when the largest Lyapunov exponent is greater
than some threshold, we get hyperchaos. We also observed some-
thing interesting. When the largest Lyapunov exponent exceeds
another higher threshold value, there is suppression of hyperchaos.
That is, as A, increases, A; decreases and hits zero when X, crosses
this threshold value (see Fig. 4). Since the largest Lyapunov expo-
nent is maximum at w = 3 or 4, hyperchaos suppression is also
abserved within this frequency range. For outside this range of s, as
stated earlier, for higher values of @, the system is more chaotic and
also hyperchaotic but not enough to cause the suppression of hyper-
chaos, With the increase in the values of @; and «;, the @ value where
the suppression of hyperchaos is present shifts to higher values of w.

V. SYNCHRONIZATION

In this section, we look at the synchronization®* between two
segments. The existence of synchronization or the lack thereof will
signify different types of swaying motion. It also might have impli-
cations to the internal stress generated within the branch and hence
to breakage, Hence, we have studied synchronization between the
lower and upper segments and found that phase synchronization
exists for certain parameter values.

The synchronization between the segments is obtained by find-
ing the linear correlation between 8; and &;, which is measured in
terms of Pearson's correlation coefficient (pﬂle;) as given below

scitation.orgljournalicha

where cov(8;,6,) is the covariance and oy, and oy, are standard
deviations of §; and &, respectively. £y, has values between +1
and —1, where 1 implies absolute synchronization, 0 implies no syn-
chronization, and —1 implies antisynchronization. We would like
to report that we observe both the phase synchronization for some
range of parameters, which changes over to antisynchronization at
certain values of the parameters. We should emphasize that the syn-
chronization occurs irrespective of whether the system is periodic or
chaotic. In fact, we observe synchronization even when the system is
hyperchaotic.

There are two different mechanisms of synchronization possi-
ble here, First of all, there is a common forcing, Both segments are
driven by the same periodic force, Second, there is a bidirectional
coupling between the two segments. We observe that when the syn-
chronized motion is periadic, its frequency is the same as that of the
drive, indicating the crucial role played by the drive. However, when
the synchronized motion is chaotic {or hyperchaotic), then clearly
mutual coupling dominates the motion.

It is observed that at low w values, the system is in the syn-
chronous state and as the w increases, the synchronizing state of the
system may change. We found three different types of transitions
between synchronous state (,o,)| > 0.5) and antisynchronous state
(,oelz,2 < —0.5) as shown in Fig. 5. The system either remains in the
synchranous state for all @ values studied (type-1) as in Fiy. 5(a),
or it is in the synchronous state for small @ values. As @ increases,
there is a sharp transition to the antisynchronous state and then
remains in that state {type-2) as in Fig. 5({1»}, or the system keeps tog-
gling between the synchronous state and the antisynchronous state
(type-3) as in Fig. 5(c).

For the second case, the w values at which the transition cccurs
shifts little toward higher w values as we increase any parameter
among &y, kz, and o,

Different types are seen for different ranges of the parameters,
In Fig. 6, we depict which type of transition occurs for different
ranges of parameters. Here, the light gray region shows type-1, the
medium gray region indicates type-2, and the dark gray represents
type-3 of transition. It is found that with an increase in k» and
oz, type-1 transition changes to type-3 transition, which then fur-
ther changes to type-2 transition. Whereas with the increase in oy,

cov(d;,8:) ©) type-2 transition changes to type-3 transition that further goes into
. (:] = - e
_} 12 O, O, type-1 transition.
- L] g ma—s - ¥ 1 e . T M
+ (@ {b) . (c}
- * » ’ a
o5 . e o5 0s
.
& ) g
Qc_'a'a Q?"ﬂ o0
0.5 Q.5 0.5 .
- .
* »
AT T o % w15 Y A R IR I & o 7 40 T
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FIG. 5. The Wpes éf uaﬁsigichs between the synchronous slate and the antisynchrbnous state. In (a), the systemis abvays in a synchronous state (type-1), in (b} the system
sharply changes #s stafe from synchronous to antisynchronous type-2), and in (¢}, the syslem loggles between the synchronous state and the antisynchrenous state (type-3).
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These observations can be understood as follows. When the
values of k; and/ or a; become large, that is, when the restoring
farce of the second segment increases it can possibly have its motion
different from the first segment (antisynchronized motion for large
). This might mean that, since we have fixed k; = 5, the lower
segment could be playing a dominating role when the motion is
synchronized, and the values of k; and @ are small,

V], CONCLUSION

This work takes the next step in our systematic development
of the nonlinear chimney model in order to understand the swaying
motion of trees. We studied a special case of the model where two
segments are connected end to end and of which one is pivoted at
the end to a rigid support. There is a nonlinear restoring force at
both joints and a gravitational force in the opposite direction.

We have explored this model in some detail with focus on
the nonlinear dynamical properties that might have relevance in
understanding the swaying motions of trees. First, we studied the
chaotic properties and found that chaos does exist for & wide range
of parameters. Moreover, over a substantial range of parameters, we
observed hyperchaos too. Then, we noticed 2 curious phenomenon,
which we call suppression of hyperchaos, where at some parameter
values one positive Lyapunov exponent increases beyond a thresh-
old and the other decreases and goes to zero. Then, we also studied
synchronization between the two segments and found that the 5ys-
tem does show phase synchronization, as characterized by the Pear-
son coefficient, for some parameter values and antisynchronization
for others even when the solution is chaotic.

The chaotic nature of the motion, possibly along with the lack
of synchronization, might have implications for the breaking off
a branch or a tree. The phenomenon of breaking is not yet well
understood." Resonance is thought of as a possible reason, but it is
not adequate . Surprisingly, the nonlinear phenomena have not yet
been incorporated in attempts to understand the swaying motion of
trees in general and breaking in particular, Hopefully, this work will
add a new dimension to the discussion.

The future generalizations will either proceed in the direction
of a longer linear chain to resemble grasses or toward a branched
structure to model plants. Also, incorporating the biological inputs

in the form of the values of the parameters and comparison with
actual experiments will have to be carried out,
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