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We generalize the chimney model by introducing nonlinear restoring and gravitational forces

for the purpose of modeling swaying of trees at

high wind speeds. We have derived the general

equations governing the system using Lagrangian formulation. We studied the simplest case of
a single element in more detail. The governing equation we arrive at for this case has not been
studied so far. We study the chaotic properties of this simple building block and also the effect
of directionality in the wind on the chaotic properties. We also consider the special case of two

elements.

Keywords: Chaos; nonlinear chimney model; riddled basin of attraction; Lyapunov exponent.

1. Introduction

Though swaying of trees is cited as a standard exam-
ple of a natural nonlinear system, surprisingly, its
complete nonlinear dynamical modeling has not yet
been carried out despite its obvious applications.
Dynamics of swaying of trees is of interest to forest
scientists [de Langre, 2008] as it has consequences to
the losses incurred in stormy conditions. As a result,
a typical question asked is how the shape of canopy
determines its response to the wind. Also, in com-
puter animation [Diener et al., 2009; Akagi & Kita-
jima, 2006; Oliapuram & Kumar, 2010; Hu et al.,
2017] developing methods for realistically depicting
the movement of trees is an active field. Here one
requires the appropriate dynamical equations mod-
eling the motion to have better visual effect.

In the past, various theoretical methods have
been developed to describe the response of the tree
to the wind load. These include, cor

tial differen

Ao
N
°d

equation for free vibrations of the beam [Moore &
Maguire, 2005] or a chimney model consisting of
coupled short oscillating sections [Kerzenmacher &
Gardiner, 1998]. But none of these incorporate the
nonlinear restoring force and also the branched
structure of a tree. However, there are some recent
works which have begun to take into account the
nonlinear effect [Miller, 2005]. Also, very recently,
Murphy and Rudnicki [2012] have evolved a way to
incorporate branching structure and also the non-
linearity in the model. In another work, Theckes
et al. [2011] constructed a Y-shaped branched
model in order to understand the structural stabil-
ity for possible applications to mechanical designs.
Though these works have initiated the incorpora-
tion of nonlinear effects in the modeling of swaying
trees, a complete nonlinear analysis of the phe-
nomenon is still lacking. There are some handful of
investigations done to study the resonance hehavior
of plant stem based on mass and nonlinear fexural
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stiffness distributions. However, there are still many
aspects, especially the chaoticity, which remain to
be explored.

On the experimental front, substantial work [de
Langre, 2008] has been carried out to measure the
motion of the trees, hence different methods are
used to record displacement, acceleration and veloc-
ity of the plant with the help of optical target mon-
itoring [Hassinen et al., 1998], inclinometer [Sellier
et al., 2006] and image correlation from videos [Bar-
bacci et al., 2013]. The objectives of the experiments
have been diverse, from studying the effect of wind
velocity to the influence of aerial architecture.

We have begun a program to carry out this
modeling ab initio and plan to carry out compar-
isons of the results thus obtained with experimental
data either already available or carried out for the
purpose. This work is the first step in this direction
which introduces and analyzes the simplest model
which arises as a natural evolution in this process. It
is not intended to include biological inputs at this
stage but only to study the nonlinear dynamical
aspects of the model,

Several computer animation studies (see, for
example, [Ota et al, 2003)), in order to make the
animation realistic, assume that the wind is turbu-
lent and use 1/ noise as a driving force. Qur work,
in fact, explores another point of view, that is, the
question of how much of the irregular motion of the
trees is due to nonlinear restoring forces leading to
chaotic behavior. Hence, we consider the wind to be
laminar and use simple driving forces as explained
later.

The paper is organized as follows. In Sec, 2
we introduce and explain our model which includes
the derivation of the Lagrangian governing the
system. This is followed by the section explaining
the numerical results, the study of Lyapunov expo-
nents for different values of driving frequencies
and the effect of different parameters of the model
on the chaotic properties. Then, we end by some
concluding discussions.

2. The Model

Our starting point is the chimney model which was
studied in [Kerzenmacher & Gardiner, 1998]. As
shown in Fig. 1, it consists of a vertical column
made of several segments with a restoring force at
the joints_an a_gravitational destabilizing force,

Certified a3

Fig. 1. Schematic diagram of the chimney model. Differ-
ent segments are connected end to end with their mass con-
centrated at the center. There is a restoring force at the
joints of the segments and also at the base of the lower most
segment. There is a downward gravitational force acting on
each segment.

It has been used to understand the swaying motion
of trees and hitherto formulated only using lin-
ear terms [Kerzenmacher & Gardiner, 1998].! This
choice of the model would allow us to easily add
the branching structure at the later stage of the
development.

2.1. General formulation

We have reformulated this problem using
Lagrangian formulation and generalized it to
include nonlinearities in order to understand the
motion of trees even at high wind velocities. As is

- ¥
L mgel%ﬁﬁ ale.-word chimney in the name though the model may no longer be applicable to chimneys,
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clear from Fig. 1, the 6; is the angle made by the ith
element with the verticle and m; is the mass which
is assumed to be concentrated at the center. Here,
we also assume that the lengths of all the elements
are the same and equal to £. If there are N number
of elements and (z,,y,) are the coordinates of the
center of the nth (1 < n < N) element, then we
have
=1

= Zfsm@ + - i blIl By
=1
and
n—1 ;
Yn = ;écos 0; + 5 cos 0,,.
Also, the components of velocities are given by
n-—-1
s = chos; 6; )9 + = LOS(E,L)Hn
=1
and
n—1
Uy =2 Zfsln (0;)0; — -sln(Q
i=1

So the kinetic energy is given by

L0
Ty = Z Emn('f?; T yi)
n=1
_ilm nz_:e 6:)6; ;-f (66,
—n=12 - 2. cos(6;) cos
n-1 ¢
X ZE(‘OS 8 —I———(oq(l?.,.,,)t%l
i=1
n—1
+( Zfsln (0:)6; — ubm{ﬁ )6 )
n—1 )
Zf%m(ﬂ )8; — -—‘:11]( )0
j=1

and after some simplification it becomes,

/2 N n—1ln-—1
TN:E;TH” ggcos{ﬂ - 8;)

+Zcos nw—0 994—192

1950048-3

Single Element Nonlinear Chimney Model

Now, we interchange the sums and, after some alge-
bra, obtain

Ty =4

g=1i=j+1

N
m;
X (? -+ Z mn))
n=i+1

e, m,
+—5§ 93,- -+ E m; |. (])
j=1

i=j+1

N N

((COS(GJ‘ — 91))9]93

The potential energy is,

N
1 .
VN = z (ﬂlngyn + akn(gn - 9”'”1)2

n=1
9-.'1—1 )1>

N n—1 Y,
= RZ:I (mng (Zl £cosB; + 5 cos Qn)
= 4=

1
+ Z kna‘n(a", ==

1

1
+ é‘kn(gn - 9?1*1)2 + Eknan(gn . 911—1)4)

and after rearranging terms it takes the form

N n—
Vi = g¢ Z My, (Z cos 0; + 5 Co8 On)

n=1 |

1 N
= E : o 2
+ 2 oo k'n.(gn 911—1)

+ - Zk an(gn ) .

Tl 1

Now, again, interchanging the sums, we get

Vy = ngLObg —+ Z m;

i=j+1

1 N
+§;kj(9j—3J_1

e .
tyg ZE LR o tdified as @
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Thus, Lagrangian is written as:

Ly=Tn-Vy
B m; L
= “z—Zgj —"'4“"1 + Z ™My
j=1 : =g+ 1
N N
+-€2 Z Z 9;'55 C()S(@i = Bj)
J=li=j+1
it N
X (—2—1 -+ Z -mn)
n=g41
N 5 N
—gﬂZcosé‘J 4 Z m;
j=1 i=j+1
1
<5 > k(85 — 0;_1)2
j=1
1
=72 kia(0; — 8;_1)*. (3)
§=1

If we write the cumulative mass of the segments

above the segment i as M; = Z;}LE 11 My, then

we get

€2 IV 2 m-j
J=t
R it
-H?zz Z 0;0; cos(8; — 6,) (%2—1 + Mi)
g=1i=j+1

- gﬁi cosf; (%&"« + Mj)

J=1

it
s > k(8 ~ ;12

J=1

AT
1
=7 k(65— 6;_1)". (4)
i=1

2.2. Special case of single element

For the special case of just one segment, the
Lagrangian takeg the form:

¢ 8
Certifict &

TRUE COPY

5y 1 2 (LN o %] )
L= 211’ ( 1 )()1 gﬁ( 5 cos b4

; i
= "ékl{g% i Zkul]ﬁf (5)

Thus Lagrangian equation of motion for single
element (including nonlinear restoring force) is as
follows

d (9[41 8L1

i3 )~ 3 =,
AT 06

m1 26, miglsin Oy
4 2

+ k161 (1 + ()1;9%) = (),
(6)

where () is the total force in the direction of
which does not arise from any potential. Here, if
consists of the dissipation force and the driving
force. To incorporate the dissipation, the frictional
force is defined in terms of a function F, known as
Rayleigh’s dissipation function, which is given by

1 ;
T (b2v2y + byvy). (7)

Since the velocity components for single element are
as follows:
g7

Vp1 = @&y = ':2— CcOos 9191,

) £ ;
Uy = Y = 5 sin 816,

the Rayleigh’s dissipation function becomes

1 V4 R £ Y
Frs 5 (bx (5 Ccos 6’101) -+ by (“"2“ sin 9191) )
(8)

and with the asswumption that the dissipation along
each direction is the same, i.e. by = b, = b, it sim-

plifies to
r_ 10 67

As a result, Lagrange’s equation of motion for
a single element system with the dissipative force,
arF . .
+=, is given as
56,0 ° BIVen &

d 3L1 ) &Ll aF drive
di (86’] 06, 98, b )
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it simplifies to (3[42) _ 6_153 % = Qdrive (16)
2562 @3 dt \ 98, o, 9o, s
Fo= bE ( 1 —- —5— 61&, (‘OS(92 93)) . (15)
( dLg) _ OLy c‘)}“g —Qdtve 1y
The Lagrange’s equation of motion for a two- dt \ 90, 892

element system becomes L
I This gives us the equation

¢ (—4- + 'mz) 6, + 62( ) (6, cos(fy — 61) — 63 sin(fy — 6;)) — g ((%»1- + mg) sin 6

. 1 &1 ;
T h101(1 + 010) — k(02 — 01)(1 + a6 — 01)2) + §b£2 (L + 0 cos(fy — 91)) =" i)

gg(”f)e +£2(”2* )(91 cos(f — 6;) — 62 sm(ﬁg—é’l))hql’( )qub

5 6y
+ k(82 — 01)(1 + (03 — 61)2) + = b£2< + 0y cos(fa — 91)) drive (19)

which is the equation of motion for two-beam system. On simplification and rearranging coefficients, it
becomes

. 2. &, 4
6 = —02cos(02 — 6) + gagsin(ag —01) + §gsm 6, - =h161(1+ a16?)

50 4
5 5k2(92 = 01)(1 + (82 - 01)*) - 5 (lQ—] + 03 cos(0; — 91)) + gQnge,

0y = —20 cos(6y — 61) — 262 sin(6, — 01) +295in 02 — 4k3 (02 — 61)(1 + aa (6, — 6;)%)

- 2b (%% + 6"1 COS(92 - 91)) -+ 4Qgrive.

We eliminate the second derivatives on the RHS to obtain

1 :
0 = (1 _ gcos(é’g _ 91)2> (gﬂ? sin(0z — 61) cos(fy ~ ;) — £ sin b2 cos(Bz — ;) + gk‘z(gz - 61)

. 4 . o 8 . 2.
X cos(fa — 61)(1 + az(fy — 61)%) + 51‘)9,1, cos(fr — 6;)% — EQS“W cos(fy — 6) + 5(}2 sin(fy — 6)

6 4 4 . : 4 .
+59sinb; — £h101 (14 6%) + ;)"32(92 = 01)(1 + (62 — 61)%) — by + gQSIIV{’): (20)

1 ;
" 4., . 12
0y = (1 B gCOS(ﬁz ~ 9])2) (——563 sin(fy - 61) cos(62 — 0;) — 5 gsin th cos(fy — ;)

8 2 8 "
-+ gkzgz cos(fg — 61)(1 + a,03) — Ekg(éb —01) cos(blz — 61)(1 + cxp(fy — 01)?)
4, 2 8 drive 12 o3 :
+ gbﬁg cos(fg — 61)° — EQQ cos(f — 61) — 267 sin(2 — 6,) + 2g sin 6y
—dka(f2 — 01)(1 + ag(fy — 6;)%) — bly + 4@;—,"“’8). (21)
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where Q¥ is the driving force in the 6; direction.
This gives us the equation

i F20 24
maf-0 N mygfsin &4 + kb1 +a19 )+ bé<8,
4 2 4

—_ Q(]I-]rivﬁ (10)

which is the equation of motion for one beam
system.

Now we add a driving force to the system. We
consider the driving force due to the wind and hence
two possibilities. The first one is that of wind chang-
ing directions continuously, a situation typical of
stormy conditions, and the other possibility is that
of wind coming from a fixed horizontal direction
accompanied by the modulations. The first force
would be better modeled by a term £f coswt/2
and the second can be expressed mathematically as
2(d + f coswt) cos 61 /2 where d is the average force
in a given direction and we have multiplied by cos 8;
as we need the component in the §; direction. On
simplification and substituting £ = 1 and m; = 1,
we get,

6 + b0 — 2gsin 6§ + 4k6(1 + a6?)

feoswt,
=2 (11)
{(d + fcoswt)cosd,
where the subscript of @ has been omitted.

To the best of our knowledge, there is no other
system where such an equation has arisen in which
both these nonlinear forees, the gravitational term
as in pendulum and the cubic nonlinearity in the
restoring force, are present. As a result, no math-
ematical analysis of such an equation exist in the
literature. While the equations with the presence of
these nonlinear forces separately have been solved
in terms of Jacobi elliptic functions, the above equa-
tion with both the terms present does not seem to
be amenable to analytic treatment. Even the con-
vergence with an approximate method using Ado-
mian decomposition [Adomian, 1991] is very slow.

In [Miller, 2005], the first two terms in the
power series expansion of sine were used leading to
the equation:

4 b + (4k — 29)0 + (gika. + %) g3

= 2 f cos(wt). (12)

\ yedoxtdd
) yedo®
fegg000Y” a;m‘ uim\m N
$530110D ‘“f} wuiid

Single El r’ment Kﬁ (‘@ﬂﬁ;‘[«;del

This is a modified Duﬁmgs SC T;fs,tor which
has been studied extensively as an example of the
simplest nonlinear generalization of driven damped
simple harmonic oscillator. The work by Miller
[2005] was, to the best of our knowledge, the first
instance of incorporating nonlinearity in the mod-
eling of swaying of trees. Such an approximation
would be clearly of use at low wind speeds. In this
work, the effect of nonlinearity in the resonance
curve was explored in detail. In the present work, we
plan to study the chaotic properties of the solutions
without making such an approximation.

2.3. The case of two elements

Now let us consider two segments.
takes the form:

1 my
g (__
2 4 r

+ 226105 cos (8, — 61) (’“’)

The Lagrangian

)i+ 10(2)

jC( 5 4 m_g) cos fy — J(‘( 5 )cos@;

1

e | 1 9
- ‘2~k‘19f — Zk]ﬂf}_@% - Ekg(eg = 91)’

1 y
o Zk2a2(92 — 01)1. {13)

Again the dissipation is incorporated through
Rayleigh’s dissipation function, which is given by

1 : i :
Fp = E(ba:'ljil + by”tj‘i. + bovs + by ‘lﬁgg)

1 ¢ . LR
= (bw ((5 cos 6y 91)
¢ . T
-+ (; cos B985 + £ cos 9,191) )
¢ e
+ by ((—'2" sin 3191)
¢ : < %2
+ (w;z- sin @20y — sin 9191) )) (14)

and with the assumption that the dissipation along
each direction is the same, ie. by = b, = b,

1950048-5
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3. Results

The primary aim of this work is to obtain some
insight into the dynamics of this model with single
element as it forms the building block of the gen-
eral model. We have carried out extensive numerical
simulations to understand the behavior of this non-
linear single element chimney model described by
Eq. (11). This understanding would then be useful
later for the model with several elements. Firstly,
we are interested in understanding the chaotic solu-
tions of this model and hence the values of the
largest Lyapunov exponent for various values of
the parameters. For comparison we also study the
chaotic properties of two-element system. We would
also like to study the effect of directionality in the
wind on its chaotic properties for different parame-
ter values.

3.1. Riddled basins of attraction

The Duffing’s oscillator has double well potential for
all negative values of & and o but our system, owing
to the gravitational term, has double well potential
even for small positive values of k (< g/2) when « is
also positive. Here, we restrict ourselves to the range
of parameters leading to the double well potential,
That is, there are two stable fixed points. In the case
of Duffing’s oscillator, it is known that when the
motion is regular the basins of attraction of these
two fixed points have smooth boundary but as the
values of w and f are increased, the motion becomes
irregular and the basin boundary starts to intersect
with each other leading to a fractal nature.

We study the basins of attraction of the sta-
ble points and find that for sufficiently large val-
ues of f and w the basins become intertwined and
the basin boundaries become fractal. Figure 2 shows
some examples. We find that the fractal dimensions
Dy lie around 1.5. This is similar to other systems
reported in the literature [Moon & Li, 1985; Gre-
bogi et al., 1987].

3.2. Lyapunov exponents
3.2.1.

Then, we compute the largest Lyapunov exponents
for various values of parameters in order to check
for the existence of chaotic motion. The largest Lya-
punov exponent can be estimated by two differ-
ent approaches: (i) by generating the divergence in
the trajectory directly from the governing equation

The case of a single element

Single Element Nonlinear Chimney Model

and their Jacobians [Wolf et al., 1985] and (ii) by
generating a {ime series from the solution of the
differential equation and then using software like
TISEAN [Rosenstein et al., 1993] or TSTOOL [Par-
litz, 1998]. We have tried all these ways, though
here we report the results of the first approach. It
is worthwhile to note that all the approaches lead to
a consistent conclusion about the existence of chaos
though the exact positive values of the largest Lya-
punov exponents differed from method to method.
We observe positive largest Lyapunov exponents for
wide parameter ranges implying the chaotic motion.
In Fig. 3, we see the Poincaré section for the system
with full sine term for some values of parameters
(k =20, @ = 1.0, b = 0.5, f = 4.4). It shows the
ranges of values of ws for which the motion seems
irregular. We find, as shown in Fig. 4, that in sev-
eral of these ranges of w values the largest Lya-
punov exponent is positive. It is interesting to note
that the Poincaré section for the truncated system
is also almost identical to that shown in Fig. 3 but
the values of the Lyapunov exponents in the chaotic
region are generally different. Figure 4 also depicts
the Lyapunov exponents for the system with trun-
cated sine of Eq. (12). We find that there is a consid-
erable difference in the Lyapunov exponents of the
two systems for smaller range of w values (w < 3)
but not so in the higher range (w > 5). Incidently,
this higher range of w values where we see chaotic
solutions corresponds to the range around the res-
onance and the lower range of w with positive Lya-
punov exponents corresponds to the subharmonic
resonances.

3:2.2.

In order to better understand the difference hetween
the effect of full sine gravitational term and its trun-
cation to cubic order, we find the Lyapunov expo-
nent of the two-beam system. Figure 5 depicts the
results. We observe that the values of the Lyapunov
exponents are quite different especially as compared
to the single beam case. Moreover, there are some
values of w for which the truncated system is chaotic
but the system without approximation is not.

The two-element case

3.3. Effect of directionality

As discussed in [Habel et al., 2009], considering
the effect of directionality in the wind is impor-
tant especially for large windCprédfidd kigsection,
we study the existence of (HIR{HE tEX PP #eter d
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Fig. 2. Fractal basin
Dy =161, (¢) f =22

boundaries for k = 1.0, o = 1.0, b= 1.0: (a) f = 2.0, w = 1.0, D
yw =08, Dy = 1.50 and (d) f=22,w=12 Dy =1.64.
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Fig. 3. Poincaré section for £ = 2.0, o = 1.0, b = 0.5,

f=44

in Eq. (11) is varied. This parameter adds a DC
shift to the otherwise periodically varying force. So
a nonzero d means that the wind is flowing in cer-
tain directions modulated by periodic variations. As
remarked before, such a wind is usually horizontal
and hence only the component perpendicular to the
segment will lead to the angular displacement. This
makes it necessary to multiply the driving force by

0.9 R R
0.8 5
0.7 t o e
0.6 3
0.5 f
0.4 f "
aosr . ;
2 D« 1
01 |
B et b oo

nov Exponerit

Lya

Fig. 4. Lyapunov exponent for k& = 2.0, a = 1.0, b = 0.5,
f = 4.4. The filled circles are for the equation with full sine
term [Eq. (11)] and filled triangles represent truncated sys-
tem [Eq. (12)].

Single Element Nonlinear Chimney Model

cos @, it introduces #-dependence also on the right-
hand side of the equation. We observe that this mul-
tiplication by cos @ leads, in general, to suppression
of chaos. That is, for example, it is seen that the
bands of chaotic behavior in Fig. 3 become smaller
when the other parameters are kept the same.

We now further study the effect of varying d
and its dependence on other parameters, k, f and
a. In general, we find that the chaos is further sup-
pressed as d is increased keeping f and o fixed. Fig-
ure 6(a) shows the effect of varying d for different
values of k. The white region corresponds to no evi-
dence of positive Lyapunov exponent for the range
of w (between 0 and 8) values explored, whereas, the
gray region corresponds to the existence of chaos at
least for some values of w. Interestingly, the suppres-
sion of chaos with increasing d is more prominent
at larger values of k. This is surprising because, at
smaller values of d, it is for this range of k that one
observes more robust chaos, in the sense that the
system is chaotic for larger range of w values and the
values of Lyapunov exponents are relatively larger.
The result of changing d and f, keeping %k and a
fixed is shown in Fig. 6(b). Here too we see that the
chaos disappears for larger values of d. However, as
expected, the range of values of d over which chaos
exists increases with f. Finally, in Fig. 6(c), we show
the results when d and « are varied, keeping k and
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Fig. 5. Lyapunov exponent for two-element system for ky =

Lk =10 =1 a =1, b= 035 f=116. The filled
circles are for Eqs. (20) and (21) with full sine term and

filled triangles are for the same systew; epd that gsin(0;)
is replaced by g(0; — 63 /6). T?Réli;igﬁceg;g"
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Fig. 6. White region implies that no chaos was observed for given values of parameters [in (a) k and d, in (b) f and d and in
(c) @ and d] for the values of w between 0 and 8 whereas the gray region corresponds to the existence of chaas for some valnes
of w in this range.

[ fixed. Here we do not see this feature of suppres-  animation of moving trees or Jjungles. Though, it is
sion of chaos as d is increased at least for the range  known that the biological materials show nonlinear
of parameters studied. In fact, there seems to be a  stiffness properties, the models built by computer
critical value of a above which one observes chaos scientists are exclusively based on linear restoring
even for larger values of d. forces whereas the studies stemming from the plant
biologists have only started to include some nonlin-
ear properties. We have planned to carry out a full-
fledged study of the swaying of trees incorporating
We have begun a complete nonlinear analysis of  the nonlinearity as much as possible. As a starting
swaying of trees. Such studies are of interest to point, we have considered the chimney model which
forest scientists interested in minimizing the loss  was used before for the same purpose but without
of wood in, say, stormy conditions and also to  incorporating noulinearity. It consists of several
compiPertifeent@3nterested in building realistic  segments connected end-to-end and erected from
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the ground. This choice of the model would easily
allow to add the branches later. There is a restor-
ing force between the joints and also at the base
of the first element and the ground. There is also
the gravitational force acting on each of these ele-
ments. We have derived general equations of motion
by reformulating this model using Lagrangian for-
mulation by taking the cubic nonlinearity in the
restoring force and the full sine term for the gravi-
tational force.

Here our attention is primarily on the single
element model but we have considered the two-
clement case too. We have analyzed various non-
linear dynamical aspects without any consideration
to the biological values of the parameters. We found
that there exists positive Lyapunov exponent in a
certain region of parameter space. The Lyapunov
exponents for the system with truncated system are
not generally the same as compared with the system
with full sine term. The sine term in the gravita-
tional force introduces a length scale in the problem
which can lead to qualitatively different behaviors
with branched structure and at high wind speeds.
In fact, we find that, in the two-element case, there
are values of parameters for which the truncated
system is chaotic but there is no chaos for the sys-
tem with full sine term. We have also studied the
effect of the directionality in the wind on the nature
of chaos and found that chaos gets suppressed as the
wind velocity increases in certain directions.

In future, we plan to study the model further
with multiple segments and also branched struc-
tures. The branch structures could consist of a sim-
ple structure with few branches or a self-similar
structure with several subbranches. Also, it would
be of interest to study the effect of different driving
forces. For a complete understanding, the inclusion
of torsional oscillations would also be worthwhile.

We also plan to carry out the comparison with
experimental data. This will be done with the
data already available in the literature and also
on the data specially obtained by measurements on
the video recordings of small plants and grass-like
plants.
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