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Abstract
In this paper, we investigate the existence of at least one solution and at least two
nonnegative solutions of impulsive differential equations with the two-point integral
boundary conditions. We employ the recent fixed point theorems for the sum of two
operators on Banach spaces. The applicability of the results is illustrated through an
example.
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1 Introduction

The theory of conventional differential equations is, no doubt, one of the versatile
tools to model and study various real-world physical phenomena. There are numer-
ous evolution processes that experience perturbations and undergo sudden changes in
their states. These changes are relatively short-time as compared to the overall dura-
tion of the whole process. Such processes can be found in various fields of science
and technology. For the description of applications in biology, medicine, population

= Sanket Tikare .
sankettikare @rjcollege.edu.in Certified as
. . TRUE COPY

Svetlin G. Georgiev

svetlingeorgiev] @gmail.com :

Vipin Kumar

math.vipinkumar219@ gmail.com . P cipai
Ramniranjan Jhunjbunwala College,

Department of Mathematics, Sorbonne University, Paris, France ~ Ghatkopar (W), Mumbai-400086.

Department of Mathematics, Ramniranjan Jhunjhunwala College, Mumbai, Maharashtra 400’
086, India

Published online: 03 May 2023 ® Birkhauser



97 Page2of20 S. G. Georgiev et al.

dynamics, economics, neural networks, readers can refer [23]. It is seen that conven-
tional differential equations are inadequate to describe such phenomena. Therefore,
it is natural to consider the governing differential equations along with their impulse
effects. These equations are known as impulsive differential equations. Inspired by
numerous applications, the theory of impulsive differential equations has been studied
intensively and over the last three decades, it has been an active research area produc-
ing an extensive portfolio of results. This can be witnessed by the following published
works by different authors [2—4, 13, 14, 21-23]. It is not an overemphasize that this
theory is much richer than the corresponding differential equations. In consequence,
it creates an important branch of nonlinear analysis.

On the other hand, due to its wide applicability in many actual phenomena, it is
essential to include suitable conditions with differential equations. This often leads
to the study of the initial and boundary value problems together with integral equa-
tions. Such problems form the basis of mathematical modelling of several dynamic
phenomena. When the boundary of the physical process is not available for measure-
ments, nonlocal conditions in a multi-point form may be imposed as an additional
information, sufficient for the solvability. Keeping this in mind, equations with multi-
point integral boundary conditions play an important and special role. They include
two, three, multi-point, and nonlocal boundary conditions as special cases. Various
differential equations with several types of nonlocal conditions have been studied
extensively and a large number of papers are devoted on this study, see [5, 6, 10-12,
18-20, 24] to mention a few.

Ashyralyev and Sharifov [1] studied the existence and uniqueness of solution for
the system of nonlinear differential equations of the type

@) = fit,x@®), tel0,T], t#u, k=1,23,...,p, (1.1
subject to impulsive conditions
X)) —x@w) = k(x@®), k=1,2,3,....,p, t€[0,T] (1.2)

and two-point integral boundary condition

-
Ax(0) + Bx(T) = f g(s, x(s))ds, (1.3)
0

where0 <ty <t <...<tp, <tpy1 =T, p € N, A, B € R"*" are given matrices
such that det(A+ B} # 0,and f, g: [0, T]|xR" and Iy : R" — R" are given functions
which satisfy certain conditions. A result concerning the existence of unique solution
of (1.1)—(1.3) is obtained using the Banach fixed point theorem while two separate
results concerning existence of at least one solution are obtained by using the Schaefer
fixed point theorem and the Leray—Schauder type nonlinear alternative, respectively.
Mardanov et al. [16] also studied the existence and uniqueness of solution for the
system of nonlinear differential equations of the type
’ i o Certified as
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with two-point integral boundary conditions of the form
T T
Ax(0) —I—/ m(s)x(s)ds + Bx(T) = f g(s, x(s))ds, (1.5)
0 0

where A, B € R"*" are given matrices such that det(A + fOT m(s)dsB) # 0, and
m, f,g: [0, T] x R" are given functions which satisfy certain conditions. Mardanov
et al. [16] used the same tools and obtained the similar results of [1].

In this paper, we investigate for the existence of at least one solution and at least
two nonnegative solutions of the following boundary value problem (BVP)

X'ty = f(t,x(@®), te€l0,T], t#n,
Ax(t) = L(x@), k=1,2,3,...,p,

T T
Ax(0) + f h(s)x(s)ds + Bx(T) = f g(s, x(s))ds, (1.6)
0 0
where0 <ty <tp <...<tp <T,pe N, Ax(ty) = x(57) —x(®). k € {1,..., p},

(tk ) denotes the nght limit of x(¢) att+ = &, k € {1,..., p}, and the nonlinear
functions involved satisfy the following hypotheses.

(H) f:10,T] x R" — R" is continuous function, f := (fi1,..., fu) such that

|fit, V)] < aij(®) + a7, (¢, v)€l0,T] xR,

where v = (vi,...,v), || = Jvi+---+v2, p; = 0, and
aij,azj: [0, T1 — [0, oo) are continuous functions such that0 <a; j, a2 < D,
j € {l,...,n}, for some positive constant D.

(Hp) Iy: R" — R" are continuous functions, Iy := (i, ..., lkn) such that

kj ()| < awj + axjlvl¥, veR",
where g; > 0, ajx; and ay; are constants such that 0 < aj, aj < D,
B sy PR 2 {lu & pitthy
(Hz) h: [0, T] — Risa contmuous function such that
lh()| <D, tel0,T].
(Hy) g: [0, T] x R" — R" is a continuous function, g := (g1, ..., &) such that

lgj(t, V)| < b1j (@) +boj()|7,  (t,v) € [0, T]x R,

where Fp B 0 and b, s bz, [0, 7] — [0, c0) are contmuous fun ﬁe‘g sgch
that0<b1],b2]§D ]6{1,..., 19 TRU-E COPY
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(Hs) A and B are constant n X n matrices such that
det (A n e‘DTB) £0.

Mardanov and Sharofov [15] investigated BVP (1.6) for the existence of unique
solution and of at least one solution in the following cases.

|f (@, u) — f(t,v)] <N @)|u — v| and
lg(t,u) —gt,v)| < M@)|u—v|, t€[0,T], u,velR" (1.7)

where M, N: [0, T] — [0, o0) are continuous functions, and

|f(t, )] < Ny and
lgt,w)| < N2, t€[0,T], uek", (1.8)

where Ni and N> are positive constants. Note that if

fitwy=gjt,wy=u;, (t,u)el0,TIxR", jefl,... n}
then f and g do not satisfy (1.7) and (1.8). Thus, the results in this paper can be
considered as complimentary results to the results in [15].

The plan of this paper is as follows. In the next section, we recall some notations,
definitions, and auxiliary results that we need throughout this paper. In Sect. 3, we prove
our main results about the existence and multiplicity of solutions for the problem (1.6)
by using recent fixed point theorems for the sum of two operators 7 + S on Banach
spaces, firstly by considering 7 linear and (I — S) be compact, secondly by taking
this sum such that 7 is an expansive operator and S is completely continuous one.
An example is given in Sect.4 in order to illustrate our obtained results. In Sect. 5, a
concluding remarks are given.

2 Preliminary Results

In this section, we will give some preliminary material needed to prove our main
results. First, we recall some notations and definitions that we need throughout this
paper.

For v = (vy,v2,...,v,) € R"” and a constant ¢ € R, when we write v > 0
we have in mind v; > 0, j € {1, ..., n}, and when we write v + @ we have in mind
(vi+a, va2,..., vp+a).Foramatrix C = (¢ij)nxn,denote [|C|| = max; je(1,...,n} lcijl.
Let

PC([0,T],R) = {u: [0, T] — R: u is continuous for any € [0, T]\ Uy_, {1}

and u(t;") exists, k € {1, 2, ..., p}} %{%ﬁg%g@
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be endowed with the norm

lullt = sup |u(®)].
1€[0,T1

Let E :== PC([0, T1, R)" be endowed with the norm

lvll = max Jlvjlli, veeE.
Jjeil,...,n}

.....

To prove the existence of at least one solution to BVP (1.6), we will use the following
fixed point theorem for a sum of two operators.

Theorem 2.1 [8, Theorem 2.1]. Let E be an infinite dimensional Banach space and
X = {u € E: |ull < p}, where p > 0. Also, let T: X — E be defined by T'[u] :=
—suforu € Xande > 0and S: X — E be continuous such that (I — §)(X) resides
in a compact subset of E and

weE:u=rI—8u), |lul =p}=0 forany A € (0, é) (2.1)

Then, there exists u™ € X so that
Tu*]+ Su*] = u*.
Here X = {pw: w € X} forany p € R.

Theorem 2.1 will be used to prove Theorem 3.8 and its proof can be found in [8]. In
the sequel, we are concerned with the existence of multiple nonnegative fixed points
for the sum of an expansive mapping and a completely continuous one. So let us recall
the definitions from the available literature.

Definition2.2 {9, A.8 in §1]. Let X and Y be real Banach spaces. A mapping
T: X — Y is said to be expansive if there exists a constant 7 > 1 such that

IT[u] — Tlvllly = Allu —viix
for any u, v € X.

Definition 2.3 [9, Definition 1.1 in §6]. Let E be a real Banach space. A mapping
S: E — E is said to be completely continuous if it is continuous and maps bounded
sets into relatively compact sets.

Definition 2.4 [9, Definition 7.7 in §12]. A closed convex set P in a real Banach space
E is said to be cone if

1. au € P for any o > 0 and for any u € P, Certified as
2. u,—u € Pimplies u = 0. TRUE COPY
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Remark 2.5 Every cone P defines a partial ordering < in E defined by
u<v ifandonlyif v—u € P.

In the sequel, P will refer to a cone in a Banach space (E, ||.|l), € is a subset of
P, U is a bounded open subset of P, and P*=P\{0}. Assume that S: U — E isa
completely continuous mapping and 7: Q — E is an expansive one with constant
b= 1.

Now, we present a multiple fixed point theorem which will be used to ensure the
existence of at least two nonnegative solutions to BVP (1.6). The proof of this theorem
is based upon a recent fixed point index developed in [7].

Theorem 2.6 [17, Theorem 2.8]. Let U,, Ua, and Us three open bounded subsets of
P such that Uy C Up C Uz and 0 € Uy. Assume that T: Q — E is an expansive
mapping with constant h > 1, S: Uz — E is a completely continuous mapping, and
S(U3) c (I — T)(). Suppose that (U,\U1) NQ # B, (Us\U2) N Q # @, and there
exists ug € P* such that the following conditions hold:
(i) S[u]l # (I — T)[u — Augl forall . > 0 and u € U1 N (R + Aug),
(i) there exists ¢ > 0 small enough such that S{u) # (I — T)[Au] forall . > 1 + ¢,
u € dUs, and hu € Q,
(i) S[u]l# (I — T)[u — Augl forall A > 0 and u € dU3 N (82 + Aup).

Then, T + S has at least two nonzero fixed points uy, uy € ‘P such that
uy € U, NQandup € (Us\Uz) NQ

or s s
up € (Up\U)NQanduy € (U3 \ Uz) NQ.

3 Main Results

We will start with the following useful lemmas, which give an integral representation
of a solution of BVP (1.6).

Lemma 3.1 If x € E is a solution of the problem

x'(t)y= f(@t,x@), te€[0,T],
Ax(ty) = L(x®), k=1,2,3,..., P, (3.1)

then it satisfies the integral equation

t
x(t) = e P'x(0) + f e PU=) (Dx(s) + f(s,x(s5))) ds
0

+ Y e P (xw)), tel0,TI, (3.2)
O<ty<t
A Certified as
and the conversely. TRUE COPY
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Proof Firstly, we will note that the solution of the equation
x'(t) = —Dx(t) + Dx(t) + f(t, x()), t €0, nl,

is given by
,
x(1) = e P'x(0) + f e PU=)(Dx(s) + f(s, x(s))ds, t€[0,1].
0
In particular, we have

t

x(t) = e Phix(0) + f ] e PU=)(Dx(s) + f(s, x(s)))ds.

0

Now, we consider the problem

x'(t) = —Dx(t) + Dx(t) + f(t,x(2)), t € (t1, 0],
t
2E") = e Phx(0) + [

0

' D1 =)(Dx(s) + f(s, x(s)))ds + I (x(11)).

For its solution, we have the representation

t
x(t) = e Px ) + f e LU= (Dx(s) + f(s, x(s)))ds

£r

t
— ,~DG~1) (e‘D”x(()) 9 f ! e PO (Dx(s) + f(s,x(s)))dS)
0
;
+ f e P (Dx(s) + f(s. x())ds + e PV N (x(n))
1

I
= e P'x(0) + f | ePU) (Dx(s) + f(s. x(s))ds
0

t
+_[ e PU=9(Dx(s) + f(s, x(s))ds + e PV (x(11))
n

t
= PxO+ [ € PIDHE) + £, xNs
0
+e PN x(m)), € bl

Assume that the solution of the problem

x'(t) = —Dx(t) + Dx(t) + f(t,x(t)), t € (tk—1, ],
| -
x(th ) = e Ph-1x(0) + f k le—D(’fH—ﬂ(m(s) + f(s, x(s))ds
Be Jo

—D(t—1y) o
+ Y e P L (x(@) + 1 (e(te-1) Tl:géﬁég;‘i'

riucipal
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forsome k € {1, ..., p — 1}, is given by

t

x(t) = e P'x(0) —I—/ e PU=)(Dx(s) + F(s, x(s)))ds
0

+ 3 e P a@), te et il

O<ty <ty

Then

Ik
x(tr) = e PHx(0) + f e Pl (Dx(s) + f(s, x(s)))ds
4]

+ Y e P (x()).

O<ty <ty

Now, we consider the problem

x'(t) = —=Dx(t) + Dx(@) + f(t, x(@)), t € (. tes1],

t
x(t]) = e Px(0) + f " DU (D (s) + (s, x(s)))ds
0

+ Y e PR (x@m)) + K(x (1)

O<ty<ty
For its solution, we have the following representation
t
x(t) = e P (eF) + f e PU=)(Dx(s) + f(s, x(s)))ds
Ik

e P L (x (1))

t
_ D) (E_D"‘x((}) + f | DU (Dx(s) + £(5, x(s))ds
0

+ ) eD(”‘“”)Iz(X(Et)))

O<ty<ty

- f e P (Dx(s) + f (5, x())ds + e~ PR (x (@)
Ik

= e P"x(0) + fm e P (Dx(s) + [ (s, x(s))ds
0

+ [[EPIDr0) + flxoMds+ Y P hw)

0<t;<tk+1
t
= ¢ Dix0) + [ e LU= (Dx(s) + f(s, x(s)))ds
Jo -
Certified as
+ Y PN, te (k). TRUE COPY

O<ty<tpi1
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Thus, the representation (3.2) holds. Now, assume that x € E satisfies (3.2). Fix
kedl, ..o p} arbitrarily and let t € (t, tx+1]. Then

x'(t) = —D(e‘D’x(OH f e PU=)(Dx(s) + f(s, x(5)))ds
0

n Z e—D(I—ff)Il(x(;[))) + Dx(t) + f(t, x(1))

O<t; <tp41

= —Dx(t) + Dx(t) + f(t, x@®))
= fit.%(8)

and

1
x(ty) = e Plex(0) + f L e PU—)(Dx(s) + f(s, x(s)))ds
0

+ > e PET R m)),

O<iy <t

1
x(t;h) = e Phx(0) + f * DU (Dx(s) + (s, x(5)))ds
0

+ Y e P L@

O<ty<ti41

Hence,
Ax(tr) = I (x (%)),

i.e., x satisfies (3.1). This completes the proof. 0

Lemma 3.2 Ifx € E isasolutiontothe BVP (1.6), then x satisfies the integral equation

T
x(t) = —e P(A+ Be PT)" !B f e PT=9) (Dx(s) + f(s, x(5))) ds
0

B Z e~ Dt~ DT (A 1 Be=PTY LB (x(1))

O<ty<T

T T
e P A 4 Be DTyt ( f g(s, x(s))ds — [ h(s)x(s)ds)
0 J0

t
s f e PU=) (Dx(s) + f(s,x(s))) ds
0

3 Z e P (x(), tel0,T], (3.3)
O<ty <t
Gri L ConverseLy. 'I%:{T%ﬁgg) ;;
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Proof Suppose that x is a solution of the BVP (1.6). We rewrite the first equation of
(1.6) in the form

x'(t) = Dx(t) — Dx(t) + f(t, x(t))

and using Lemma 3.1, we have that x satisfies (3.2). Hence,

T
x(T) = e PTx(0) + f e PT=9 (Dx(s) + f(s,x(s5))) ds
0

+ Z e PT=L (x(tx)), tel0,T]

O<tp<T

and

T
Bx(T) = Be PTx(0)+ B f e PT=) (Dx(s) + f(s, x(s))) ds
0

+ Z e PT-BL (x(t), tel0, Tl

O<ty<T
From this, the boundary condition in (1.6) becomes
T T

[ g(s, x(s))ds — f h(s)x(s)ds
0 0
= Ax(0) + Bx(T)

T

= (A + Be“DT)x(O) — B/ g~ DT~ (Dx(s) + f(s,x(5)))ds
0

+ Y e PUTWBL(x®)),

O<ty<T
which yields
(A+ Be PTyx(0) = -B fo " o= (Dx(s) + f(s,x(s))) ds
> e PTWB L (x (1)

O<ty<T
T /4
+f g(s,x(s))ds—-f h(s)x(s)ds
0 0

and consequently,

T
x(0) = —(A + Be PT)~1p f e PT=9) (Dx(s) + f(s,x(s)))ds

0
S e DT0h oDy B
O<ty<T
o \Certified as
+(A+BeP (j g(s, x(s))ds —j h(s)x(S)dS}'RUE COT
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Now, substituting this value in (3.2), we get (3.3). On the other hand, if x € E is a
solution to the integral equation (3.3), then by direct computations, we see that x will
be also a solution of BVP (1.6). This completes the proof. O

Before moving further, for x € E, we define the operator S;: E — R" as

T
Si[x1(t) = —e PH(A + Be—DT)—‘Bf e~ PT=9) (Dx(s) + f(s, x(s))) ds
0

Y e P PT(A 4 Be 1) BIk(x ()

O<ty<T

T P
+e PHA + BePT)~! (/ g(s, x(s))ds —~f h(s)x(s)ds)
0 0

t
—I—f e~ PU=9) (Dx(s) + f(s, x(s))) ds
0

n Z e P L (x (1)) — x(), t € [0, T). (3.4)

O<ti <t
Remark 3.3 1f x € E satisfies the equation S;x = 0, then it is a solution to the BVP
(1.6).

Lemma 3.4 Suppose that the hypotheses (H|)—(Hs) hold. Then for any x € E with
x|l < D, the following inequality holds.

1S:0) < D+ (WA + Be Py B +1) 3 (DT + 7D (1 + VD))
j=1

e (n (A " Be_DT)_l | 1) Déu + /nD%)

+ 1A+ Be™Py T [ DY (1 4 +/nD") +nD?
Jj=1
=: Dy,

where S) is defined in (3.4).
Proof In view of (H;), (H), and (Hs), we write

|fj(t, x(0)| < D(1 + «/nDP),
11j(x(t;)| < DA + +/nD%), and
lgjt, x|l < D(1++/nD"), jefl,....,n}, t€l0,T]

Then

Certified as

7 TRUE COPY
1S [x]ll = ” ~& PHA 4 Re DTy 1 f e DT =9) (Dx(s) + f(s, x(s))) ds

| (e
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_ Z: e~ Dte=DT -t 1 BePTY 1B (x ()
O<tp<T

. T T
3¢~ PEGA - Be—PF (/ (s, x(s))ds — f h(s)x(s)ds)
0 0

t
+f0 e D= (Dx(s) + fls.xMds+ Y e P L) - x(1)
O<ty <t

T
< x|l + “ = g DA Be_DT)_le e~ DI=9) (Dx(s) + f(s, x(s))) ds
0

-y e D= DTt (A 1+ Be~PTY~1 B L (x (1))

Oty <1’

T T
i g~ DA & B~ DTy ([ g(s, x(s))ds — f h(s)x(s)ds)
0 0

'
+f0 e~ PU=) (Dx(s) + f(s,x(s))) ds + Z e_D(t_rk)fk(x(Ik))”

O<ty <t

T .
< |lx|l + \ —e PlA+Be Py 1B f e~ PI=5) (Dx(s) + f(s, x(s))) ds
0

& Z e—Dre—D(T—fk)(A+Be_DT)_1BIk(X(tk))”
O<ip<T

T T
+ lle Pt (A + Be DTy ([ g(s, x(s))ds —f h(s)x(s)ds)
0 0

4
+ f e LU= (Dx(s) + Fs, xeds| + | Y e PO L)
G O<ty <t
and subsequently, we obtain ||S;[x]|| < D;. This completes the proof. O

Now, we introduce a new hypothesis and an operator as follows.
(Hg) Suppose C > 0 is a constant such that CD; < D.
For x € E, define the operator S;: E — R" as

C 4
S [x]1() = ?ﬁ Silx1(s)ds, te€[0,T], (3.5)

where S; is defined as (3.4).
Remark 3.5 If x € E satisfies the equation

Sxl¢t) =0, tel0,T], (3.6)

for arbitrary constant Q, then x is a solution to the problem (1.6). Really, differentiating
(3.6) with respect to 7, we get

C Certified as
7310 =0, r<[0,T1, TRUE CORY
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whereupon S;[x](t) = 0,1 € [0, T].
Lemma 3.6 Suppose that (Hy)—(Hs) hold. Let x € E be such that ||x|| < D. Then
1 S20x]1ll < CDy. (3.7

Proof The assertion follows directly from Lemma 3.4. O

3.1 Existence of at Least One Solution
Let X be the set of all equicontinuous families in E and define
X:={xeX:|x| <D}
Let also, € € (O, %) For x € E, we define two operators 7, S: E — R" as follows,
Tx]() := —ex(2) (3.8)

and
Six1@) := (1 + &)[x1(@) + eS2[x1(), t€][0,T], (3.9)

where S5 is defined in (3.5). Note that any fixed point of the operator T + S is a solution
to the BVP (1.6).

Lemma 3.7 Suppose that (H\)-(Hs) and (He) hold. Then for x € X, the following
treequaticies fold.

I = 9xll <D and (L +e)] —Sx]ll <e€D.

Proof Using definition of the operator S, we have

W = )l = || — ex — eSalxl|
< ellxll + llSalx]l

G.7)
< e(D+CDy)

= b
and
(1 + &)1 — SHIx]ll = lleS2Lx]ll
= el|S2x]ll
3.7
GS) SCDl
5 Bk Certified as
TRUE COPY
This completes the proof. O

¥cipal
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Now, we are in a position to state and prove our main result of this section which
is as follows.

Theorem 3.8 Suppose that (H,)—(Hs) and (He) hold. Then the BVP (1.6) has at least
one solution in E.

Proof Note that the operators Sy, Sp : E — R” defined in (3.4) and (3.5) respectively,
are continuous operators. We consider two operators 7 and S defined in (3.8) and
(3.9) respectively. In view of Lemma 3.7, it follows that the operator / — S:X—> X
and it is continuous. Since the continuous maps of equicontinuous families forms
equicontinuous families, we conclude that the image set (/ — S)(X) resides in a
compact subset of E. Suppose that there is an element x € 9X and A € (O, %)
satisfying

Al — S)[x] =x. (3.10)

This, using definition of operator S, we write as
PR Sa2[x]
X = —ex —eSlx].
That is,
1
(X +8) x=({14+8I—-8Ix]

Whereupon we have the following

eD < (% + 8) D= (}% = 8) Ix)l = el Salx])l = (1 + )T — S)x]).

But from Lemma 3.7, we have ||((1 + &)I — S)[x]|| < eD. Hence, we arrived at a
contradiction. Therefore, our assumption that (3.10) is not correct. From here, we get

ueX u=r—-9u)l, lul|l=D}=0 for any AE(O,E).

Thus, all conditions of Theorem 2.1 hold. Therefore, the operator 7 + S has a fixed
point in £ which is a solution of BVP (1.6). Hence, BVP (1.6) has at least one solution.
This completes the proof. O

3.2 Existence of at Least Two Nonnegative Solutions

Next, before proving the result concerning multiple nonnegative solutions of BVP
(1.6), we introduce one more hypothesis as follows.

(H7) Let m > 0 be large enough and r, L, D be positive constants that satisfy the
following inequalities.

. Certified as
() r<L <D, TRUE COPY

%ﬁl
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(i) D> (& +1)L,

Sm

(iii) CDy < &.

Let ¢ > 0. For x € E, we define two operators Ty, S3: E — R" as follows,

T1[x1@) := (1 +me)x(t) — 8“1% {(3.11)

and

S3[x1(t) == —eSox(t) — mex(t) — 8%, t €0, T], (3.12)

where > is defined in (3.5). Note that both T; and S are continnous operators on E.

Further, any fixed point x € E of the operator 77 + S3 is solution to the BVP (1.6).
Our main result in this section is as follows.

Theorem 3.9 Suppose that (Hy)—~(Hs) and (H7) hold. Then BVP (1.6) has at least two
nonnegative solutions in E.

Proof LetP = {x € X:x > (0} be a cone in E. First we define some subsets of P
which are used in the proof.

Uy=Pri={xeP: x| <7},
U =P ={xeP:|xll <L},
Us =Pp:={xeP:|x|| <D},
¢

e o L
Q-_:’PRZ:={xe73:nxi1§R2, Rh=D+—D1+—¢.
m Sm

Now, we consider two operators T} and S3 defined in (3.11) and (3.12) respectively,
and employ Theorem 2.6. The proof will be given in the following steps.

Step 1. For x, y € , from (3.11) we see that
1T1[x] = Talylll = (L +me)llx — yl,

whereupon the operator 7} :  — R” is an expansive with a constant 1 + me > 1.

Step 2. For x € U3, from (3.12) we see that

L
IS0l < el Safx il + reefixfl + 6—

10
3.7

L
= CD D4 |
= 8( 1+m +10)

This means that S3(Us) is uni_formly bounded. Now, since S3: Uz — R”" is
continuous, it follows that S3(U3) is equicontinuous. Consequently, the operator

S3 : Uz — R" is completely continuous. .F;géﬁg%;sy

Ramuirsoiar fhusibunwala College,
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Step 3. For x € U3, set
1 L
y=x+—8[kx]+—. (3.13)
m S5m

Note that S>[x](t) + % > 0 on [0, T]. Then, we have y > 0 on [0, T'] and

1 L
Iyl < lixll + = I1S20x)ll + =—
m

Sm

(3.7 C L

< D+—D1+—

m S5m

= Rz.
Thus, y € 2 and from (3.13), we write

. S[x] L L
emy = —emx — €52[x 810 810

which, upon using (3.11) and (3.12), yields

(I — T)ly]l = S3lx].

Thus, S3(U3) C (I — T1)(RQ).
Step 4. Assume that for any uo € P* there exist A > 0 and x € U1 N (2 + Aug) or
x € 0U3 N (2 + Augp) such that

S3[x] = (I — TY)lx — Augl.

Then using (3.11) and (3.12), we write this as

L L
—eS[x] — mex — Sﬁ = —me(x — Aug) + 81—6,

which yields

L
—5[x] = Amug + 3

Therefore

>

’ TRUE COPY

which is a contradiction. Hence, %
Princinal

Salx] # (I — T1)lx — Auo] Ramnirapiae Taunihunwala College,

_ _ Ghatlopar (W), Mumbai-400086.
forallA >0andx € U1 N (R + Aug) orx € aU3 N (2 4+ Aup).

L L Certified as
R P

Step 5. Let &1 = ==. Assume that there exist A > &1 + 1, x1 € 3Us, and Ax; € Q
such that
Sa[x1] = (I — Ti)[A1x1]. (3.14)
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Since x1 € dU> and A x| € 2, it follows that

2
(_+1)L5A1L=Mllxlll =Rz
Sm

Moreover, using (3.11) and (3.12), we have

Salxi] — L oy

eS[x1] —mex —810 = —A1MEX] 810
That is, y

SZ{xf} + g = {A[ = l}mx;.
From here,
E L
23 > || Saxy + 3= (A1 — Dm|lxtll = g — DmL

and

2+1 %
i > 5
S5m \

which is a contradiction. Hence, there exists ¢ > 0 small enough such that
S3[x1]1# U — T)[rxy]foralld; > e+ 1,x; € oU,, and Ayx; € 2.

From above steps, we see that all conditions of Theorem 2.6 hold. Hence, the BVP
(1.6) has at least two solutions, say u1, up € E such that

ffurll = L < ffuall < O

Qor
r<|luill < L < |juzll < D.

This completes the proof. O

4 An lllustrative Example

In this section, we shall give an example that show the utility of our main theorems 3.8
and 3.9. Consider following the boundary value problem.

Lo (e@)? Lo ) 1
a0 =1z (2 (1)) and 1206 = fram@)e - 0.1}, 27 2.

14 116
55y (l): (x2(3)) 8andAx2(£)= (x1(3)) |
3 1+ (%(3)) 3 1+ ®(3))
2 (x1(5))? )
1454 L+ (x4

1 g2 _ i (sz(S))j
— x1(0) — x2(0) +](; mxg(s)ds + x2(1) —[0 1+ ()Cz(s))ﬁdr U-F‘&ég

%pal

Rammniranisn Mhunjhunwala College,
Ghatkopar (W )., Mumbai-400086.

1 1
x1(0)—x2(0)+f x1(s)ds + x1(1) :fo
0
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Comparing BVP (4.1) with BVP (1.6), we find that T = 1, p = 1,1y = §,

v vi v3
i) = . f, U) = , I (v) = ;
fl( ) 1+U421_ fZ( ) 1+U? ll() 1+U§
1 (U)_—“"v? h(t) = P
P T Y T T
vf v)
{E:0) = ——, t,v) =—=—, tel0,1], v=(v1,v2),
g1 T+ g(t,v) [ o8 [ (vi, v2

a=(X ) e=(s 7).

and py =4, pr = 3,q1 = 4,q2 = 6,a11(t) = an(t) = 0,a21(¢t) = an(t) = 1,
aiyl =0,a211 = 1,a112 =0,a212 = 1, D = 1. Next, we see that

(A+e 'By=(A+e¢ 'B)B

_l _
and
~'B)” -1 gy 1 —1+e! 1
1 1 . 1 1 _
(A+e "By ' B=(A+e B) _eﬁi‘-z( I I+e—1)’
with
-2
g -2
A #IB -1 = =1‘
(A +e "B ——
Further,

DI =1420+DA+1+VD+20+ DA +vV2)+ 21 +vV2) +2) .
=174 10v2.

Take O = mﬂ% Then we get CD; < D. Thus, (H;)—(Hs) hold. Hence, employing
Theorem 3.8, we conclude that the considered BVP (4.1) has at least one solution.
Letnow L = &, r = §,m = 10°°. With this data, it follows that

2 1 )
L<D 1=D>[—"+1)==(=+1)L,
ralesdh 4 >((5)(1050)+ )6 (5m+)

Certified as

and CD; < % Thus, (Hy) also holds. Then, by employing Theorem 3.9, TRUEILISPY
that the BVP (4.1) has at least two nonnegative solutions.
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5 Concluding Remarks

This paper explores the existence of at least one solution and at least two nonnegative
solutions for the differential equations with impulses and two-point integral boundary
conditions by employing recent fixed point theorems for the sum of two operators
on Banach spaces. The results of this paper are essentially new in the sense that
they are considered in the context of impulsive conditions and two-point integral
boundary conditions. The boundary condition taken in this work is more general and
includes various others as special cases. The results obtained in this paper can be
further investigated for higher-order differential equations with impulses. We also
believe that other qualitative properties like data dependence, stability, controllability,
and oscillations can be studied in the forthcoming papers.
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