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ULAM STABILITY F OR FIRST-ORDER
NONLINEAR DYNAMIC EQUATIONS

MARTIN BOHNER AND SANKET TIKARE

Dedicated 10 Professor Mustafa Kulenovié on the occasion of his 70th birthday

ABSTRACT. The purpose of this paper is to investigate Ulam stability of first-
order nonlinear dynamic equations on time scales. Based on the method of the
Picard operator and using dynamic inequalities, we obtain four types of stability,

1. INTRODUCTION

Itis widely known that stability of solutions is one of the most important and in-
teresting properties among various qualitative properties of solutions. In the exist-
ing literature, there are several stability theories, for both differential and difference
equations (see e.g., [15,20,23, 24] for the discrete case and [25, 26] for PDEs) but
the concept of Ulam stability has significant applications in various fields of math-
ematical analysis. This is mainly because Ulam stability essentially deals with the
existence of an exact solution Niear to every approximate solution and is useful in
the situation when it is difficult to find the exact solution. This kind of stability
for functional equations was first discussed by Ulam [39] in his famous talk at the

University of Wisconsin in 1940. He proposed to “provide an approximate solu-

the results of Hyers were extended by many authors, but remarkable improvements
were provided separately by T. Aoki [10], D. G. Bourgin [19], and Th. M. Ras-
sias [31]. The problem of stability in Ulam sense for various kinds of differential,
difference, integral equations etc. has been seriously studied by many researchers
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X (1) = f(1,x(t))
both in finite and infinite intervals. Also, in [34], he presented and discussed Ulam-
type stability for the differential equation

X (£) = p(t) + £(t,%(t))

in Banach spaces. Y. Shen and Y. Li [36], employing the method of variation
of parameters, established the Ulam stability for linear differential equations of
first-order, second-order, third-order, and nth order. In 2015, J. Huang et al. [21],
adopting a fixed point method, investigated Hyers—Ulam as well as generalized
Hyers-Ulam stability of nonlinear differential equations involving a Lipschitz con-
dition on infinite intervals. Q. H. Algifiary and S. M. Jung [3] proved Hyers—Ulam
stability for second-order differential equations using Gronwall’s inequality. Very
recently, A. B. Makhlouf et al. [14] investigated Hyers—Ulam and Hyers—Ulam—
Rassias stability for stochastic functional differential equations via the method of
fixed point and stochastic analysis techniques.

S. Andrés and A. R. Mészdros [9] studied Hyers-Ulam stability of some linear
and nonlinear dynamic equations as well as integral equations on time scales. They
employed both direct and operational methods, and based on the theory of Picard’s
operators, proposed a unified approach to Hyers—Ulam stability. Y. Shen [35],
employing the method of integrating factor, investigated Ulam stability of the first-
order linear dynamic equation

XA() = p()x(t) + £ (1)
and its adjoint equation
() = —p(N)a°(6) + (1)
on a finite interval. Also, D. R. Anderson and M. Ointsuka [4] established Hyers—
Ulam stability of certain first-order linear homogeneous dynamic equations with
constant coefficients. They extended the results given in [28, 29] to all time scales
and also provided an application to a perturbed linear dynamic equation.
Most recently, in 2021, applying dynamic inequalities, M. A. Alghamdi et al.

[1,2] obtained several results on Hyers-Ulam and Hyers—Ulam-Rassias stability
for the first-order dynamic equations ’

X (1) = p(t)x(e) +£(1)
X(0) = p(1)x(t) + £, 5(1), h(x(2)) + 8(0),

and

respectively.
In this paper, we investigate Ulam stability for the nonlinear dynamic equation
(NDE) of the form

A1)+ p(e)x® (1) = £(1,x(2)), 1€, (1.1)

where J := [a,b]r, a,b € T with a < b, x : ] = R is the unknown function to be
determined, x° = xo o, x* is the delta derivative of x, p: T — Ris a positively
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ULAM STABILITY FOR FIRST-ORDER NONLINEAR DYNAMIC EQUATIONS 85

regressive and rd-continuous function, f: IxR - R is rd-continuous in its first
variable and continuous in its second variable.

Based on the method of Picard operator and dynamic inequalities, we obtain
results on stability of NDE (1.1). The results obtained in this paper are more
general than the known results available in the literature and include the stud-
ies [2,4,21,33,36). For the existence, uniqueness, and other properties of solutions
of NDE (1.1), we refer to [18,37,38).

2. PRELIMINARIES

To understand the notation used in this paper, we include some preliminary ma-
terial. The following material pertinent to time scales can be found in [16, 17]. A
nonempty closed subset of the real line R is called a time scale T. We usually write
T =T\ {max T} if maxT < oo, otherwise T* = T,

Definition 2.1. A Junction f:T — R is said to be delta differentiable at ¢ eT*jf
there exists At eR, a so-called delta derivative of f, with the Jollowing prop-
erty: For any € > 0 there is o neighbourhood N of t, such thas

A0 = £(5) = P 0)(o() =) <elo(t)—s| fora sen,

Definition 2.2. A Junction f: T - R js rd-continuous if it is continuous at every
right-dense point or maximal point in T and its left sided limits exist at left-dense
points in T. The symbol Cra(T,R) will be used Jor the set of all such Junctions. If
afunction f: TxR — R is rd-continuous in its first variable and continuous in its
second variable, then we write S €Cu(T xR,R).

Remark 2.1. The family Cq(J,R) of all rd-continuous functions from Jinto R
forms a Banach space coupled with the norm || - || defined as [l := sup [x(z)).
te]

Definition 2.3, We say that p : T — R is regressive ¥ 1+4u(t)p(t) # 0 for all
t € T. The symbol R(T,R) will be used for the set of all rd-continuous regressive
Junctions. If 1+ u(t) p(t) >O0foralit € T, then P is said to be positively regressive,
and R‘*(T,R) denotes the set of all rd-continuous positively regressive Junctions.

Definition 2.4. For p ¢ R(T,R), the generalized exponential function ey(t,s) on
the time scale T is defined as

Loglltudp(l, Y
ep(t,s) 1= P /s () A ) ifu(r) #0,

i3
exp f p(r)Ar) ifu(r) =0.
For p,q € R(T,R), we define

_P N R
y POGi=pd(Eq).
Tk PO9=p0(0g)

POG:=p+q+upg, ep:=
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86 MARTIN BOHNER AND SANKET TIKARE

Remark 2.2. We let
Ej, = sup leg,(t,5)| >0 and E,:=sup |ee‘_qﬁ(t,s)| > 0.
tel i :

spel SHE
In our investigation, we mainly use the following results and definition.

Theorem 2.1 (See [40, Theorem 2]). Lety, ¥ € Coa(T,R*) with F a nondecreas-
ing function and G, H € R (T,R) with G >0, # > 0. If

90 <70+ [ 56) o)+ [ G| as forait e,

then
¥(t) < F(t)esryg(t,a) forall teT™

Definition 2.5 (See [32, Definition 2.1]). Let (M, d) be a metric space. An operator
A M — M is said to be a Picard operator if there exists u* € M with the following
properties:

(i) Fa = {u*}, where Fy is the fixed point set of A;

(i) the sequence {A"(u)}nen converges to u* for allu € M.
Lemma 2.1 (Abstract Gronwall lemma [32, Lemma 2.1]). Let (M,d,<) be an

ordered metric space and A : M — M an increasing Picard operator (Fy = u;).
Then for u € M, u < A(s) implies u < uy, while u > A(s) implies u > uy.

Lemma 2.2 (See [18, Lemma 3.1]). Lera € T, f € Ca(J x R,R), and p € (J,R).
Then, x satisfies (1.1) if and only if
it
x(t) = egp(t,a)x(a) -1—/ eop(t,s)f(s,x(s))As  forall tel]. 2.hH
a
Now, we introduce some basic definitions that will be used in this paper.

Definition 2.6. We say that NDE (1.1) has Hyers-Ulam stability if there exists
K > 0 with the following property: For any € >0, ify € Cly(J,R) is such that

YA+ (1) - £, (@)| <& forall 1€l 2.2)
then there exists x € C}y(I,R) satisfying (1.1) such that
[y(#)—x()| <Ke forall te]. (2.3)

Such K > 0 is known as HUS constant.

Definition 2.7. We say that NDE (1.1) has generalized Hyers-Ulam stability if
there exists 8y € C(R*,R*), 0,(0) =0 with the following property: For anye >0,
if y € CL(I,R) is such that

AR +pE° )~ F(y@) <& forall telX, 24)
then there exists x € CL (I, R) satisfying (1.1) such that
y(e) —x(t)] < 6f(e) forall tel. {2.5)
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ULAM STABILITY FOR FIRST-ORDER NONLINEAR DYNAMIC EQUATIONS 87

Definition 2.8, Ler N be a family of positive nondecreasing rd-continuous June-
tions defined on J. We say that NDE (1.1) has Hyers-Ulam—Rassias stability of
type N if there exists K > 0 with the following property: Forany ¢ € N and € > (),
ify € CL(I,R) is such tha

DA+ )y (1) - £(2,3(0))] < e(r) forall teJ¥ (2.6)
then there exists x € L ,R) satisfying (1.1) such that
y(#) =x(1)| < Keo(t) forall tey, {2.9)

Such K > 0 is known as H. URS constant.

Definition 2.9. Lt N be a family of positive nondecreasing rd-continuous Junc-
tions defined on J. We say that NDE (1.1) has generalized Hyers-Ulam—Rassias
stability of type N if there exists K > O with the following property: Forany ¢ € 4,
ify € CL(I,R) is such that

DA@) + p(1)y° (¢) —fEYO)I <0(t) forall :e ¥, (2.8)
then there exists x € CL (J, R) satisfying (1.1) such that
(1) —x(2)] < Ko(t) forall re]. (2.9)

Such K > 0 is known as GHURS constant.

Remark 2.3. A function y € Cpy(J,R) satisfies (2.6) if there exists y € C,(J,R)
(which depends on y) with the following properties:

(0 w(t)| < eo(r) forall z € J, :
(1) yA(2) + p)°(r) = £, Y(t)) +y(t) for all z € J*,
Similar arguments hold for the inequalities (2.4) and (2.8).
3. ULAM STABILITY

In this section we prove our main result of Ulam stability for NDE (1.1) and
provide its applications.

Theorem 3.1. Consider the NDE (1.1). Assume that the Jollowing conditions are
satisfied.

(C1) Let pe R*(J,R) and f € Cyy(J x R,R).
(Ca) There exists Ly > 0 such that

| f(t,u) — fiv) < Lelu—v| forall te] and v eR. (3.1
(C3) There exists n > 0 such that Jor ¢ € A(J,R*)

¢
f O(s)As <o) forall 1€, (3.2)
IfE,Li(b—a) < 1, then the Jollowing assertions hold:
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(i) The NDE (1.1) has a unique solution x € Cll.d(J ,R) satisfying the initial con-
dition x(a) = A for any initial value A € R.

(ii) The NDE (1.1) has Hyers—Ulam—Rassias stability of type N with HURS con-
stant Ep(b— a)eg,1,(b,a).

Proof. By Lemma 2.2, the NDE (1.1) with initial condition x(a) = A is equivalent
to the integral equation
t
x(t) = eap(t,a)A + / eop(t,5)f(s5,1(s))As forall t€].  (33)
a
We first show (i). Fix A € R and define 7 : Cq(J,R) — Cra(J,R) by

T(x)([) = eG)P(I!a)A 'I‘far e@p(r,s)f(s,x(s))As. (3'4)

We show that the operator T has a fixed point, and for this we use the contraction
mapping principle. For any x,y € Cra(J,R), we can write

T&O-TOE
< leap(ta)lA = Al+ [ leapless)l£(5,() - £s,3(5))lAs
(C2) 4 .
<E, [ L) -y0)las
< ELy{b-a)llvyl.
Thus,

I7() =TGN < EpLp(b—a)lx—y| forall xye Cu(l,R).

Since EpLs(b— a) < 1, the above inequality implies that the operator T is a con-
traction on Cy(J,R). So, T has a unique fixed point x* € Cyy(J,R), which is the
unique solution of the NDE (1.1) satisfying x*(a) = A.

Now we show (ii). Let y € C}(J,R) satisfy (2.6) and let x € C;q(J,R) be the
unique solution of (1.1) satisfying the initial condition x(a) = y(a). Then (Cy)
allows to write

t
x(£) = ea,(t,a)y(a) + / eap(tyS)F(s,x(s))As forall tel.
a
Now, since y € Cr]d (J,R) satisfies (2.6), by Remark 2.3, we can write

YO +p)° (1) = £(1,y1) + () forall 1eJ¥,
where |[y(7)|| < €d(¢) for all t € J. Thus,

y16) =ezpl0.0(@) + | eap(t,0)(75,(6)) +w(s)as

. / elE e oA ' [ el s YU AS,

This gives
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ULAM STABILITY FOR FIRST-ORDER NONLINEAR DYNAMIC EQUATIONS 89

(0~ espltay(a)~ [ “eop(tu5)f(5,3(s))As

< [lecplt.o)lvs)las (3.5)
(%}Ep(b—a)n«i)(t)e forall re].

Now, for ¢ € J, we can write

(e} —x(5)| =

X0 =een(ta)y(a)~ [ ecy(t,9)f(s,y(s)) s
+ [ eaplt9) (5,569 - [ eeple.s) (5,560
< ) —ecptraptal - [ eoplt.)f(5,1(5))s
+ [ leep(t)Lt63(0) - 5,6l
(3.5)

< Ep(b=amo0)e-+ [ leap(t,l1f(5,505)) - Fls,x(s)las

(C2) ot )
S Bpb-amo@etLy [ leop(t,)00) - x)ias. @6
According to (3.6), we consider the operator §: Crg(J,R) — Cry(J, R) defined by

S) (1) ==E,(b— a)n¢(t)e+Lf/a! eop(t,5)x(s)As. 3.7

For u,v € Cyy(J, R*), we can write

SE(E) = S0)e) =Ly ["eap(e,5)(us) - v(s) .
Then ;
IS@)(#)=SW)(1)] < LeE, (b - a) Ju— v,
Since E,Ls(b—a) < 1, we obtain that § is a contraction on Cy4(J ;R), and using

the Banach contraction principle, we see that S is a Picard operator and Fg = {u*}
Then for ¢ € J, we have

U (t) = Ey(p— a)n¢(t)8+Lf£I ecp(t,s)u’ (s)As.

We notice that u* is increasing and

u'(t) <E,(b— a)nq)(t)e-i-'[Epou*(s)As.

Employing the Gronwall inequality given in Theorem 2. to the above inequality
with y(t) = u*(t), F (1) = Ep(b—amo(t)e, #H (1) = EpLys, and G(t) = 0, we obtain

u'(t) <Ep(b— amo(t)ees,.,(t,a) forall fe]J.
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90 MARTIN BOHNER AND SANKET TIKARE

From (3.6), we have u(t) < S(u)(f) for all t € J, where u(t) = |y(¢) — x(¢t)|. Thus,
§ is an increasing Picard operator on Ciq(J,R). Now, in view of Lemma 2.1, we
obtain u(f) < u*(t) for all t € J. This implies that

u(t) <Ep(b—a)eg,r,(t,a)end(t) forall tel.

That is,

[y(t) = x(t)| < Ep(b—a)eg,i,(t,a)end(t) forall te&].
Thus, the NDE (1.1) has Hyers—Ulam~Rassias, stability of type A’ with HURS
constant E, (b — a)neg,r,(b,a). O
Corollary 3.1. Assume (C1)~(C3). If E,Lf(b—a) < 1, then (1.1) has generalized
Hyers-Ulam-Rassias stability of type N\ with GHURS constant Ej(b—aMeg,1,(b,a).
Proof. In the proof of Theorem 3.1, if we take € = 1, then we obtain

(#) = x(t)| < Ep(b—a)eg,r,(b,amo(t) forall rel].
This shows that NDE (1.1) has generalized Hyers—Ulam—Rassias stability of type
AL with GHURS constant E, (b — a)Neg,.,(b,a). O

Corollary 3.2. Assume (C1)~(C3). If Epo(b —a) < 1, then NDE (1.1) has Hyers—
Ulam stability with HUS constant Ep(b— a)neg,1,(b,a).

Proof. In the proof of Theorem 3.1, if we take ¢(¢) = 1, then we obtain
y(t) —x(t)| < Ep(b—a)neg,,(b,a)e forall zel].
Thus NDE (1.1) has Hyers-Ulam stability with HUS constant E(b—aneg,.,(b,a).
U

Corollary 3.3. Assume (C1)~(Cs). If E,L¢(b— a) < 1, then NDE (1.1) has gener-
alized Hyers—Ulam stability.

Proof. Using 8(€) = E,(b— a)neg,r,(b,a)e, the result follows from Corollary
3.2. (]

Now, as an application of Theorem 3.1, we shall discuss Hyers—Ulam—Rassias
stability of the adjoint equation to (1.1), namely
A1) +q()x(t) = g(t,x(t)) forall reJ¥, (3.8)
where g € R 7(J,R) and g € Cy(J x R,R).

Theorem 3.2. Consider the adjoint NDE (3.8). Assume that the following condi-
tions are satisfied.

(C4) Let g € Ciy(I x R,R) and g € R*(I,R) be such that 1 — u(t)q(t) > 0 for
allt €.
(Cs) There exists Ly > 0 such that
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ULAM STABILITY FOR FIRST-ORDER NONLINEAR DYNAMIC EQUATIONS 91

800 = 8(.)] < Ly(1 — ) g(r)u— ] (39)
Jorallt € J and u,v c R.
(Co) There exists > 0 such that Jor o € A((J,RH)

/Id)(S)AS <SNO(t) forall te]. (3.10)

FELy(1—u(t)g(r))(b— a) < 1, then the Jollowing assertions hold:

() The NDE (3.8) has a unique solution x ng J,R) satisfying the initial
condition x(a) = A for any initial value A € R,

(ii) The NDE (3.8) has Hyers-Ulam-Rassias stability of type N with HURS
constant E4(b — aneg,.,(b,a).

Proof. In view of the ‘simple useful formula’, putting x® — ¥ in place of x in

(3.8), we obtain
(1) +q(0)(x(2) — ()X () = g(t,x(2)).
Rearranging the terms, we can write this equation as
A+ ( q() ) o) = 8t:x(1)
O\ T ) O = 1 s
This equation is in the form of (1.1) with p() := —20)__ .09 flt,x) = T_ﬂ“(r;f%(,j-

1-u(t)q(r)
In view of conditions (C4) and (Cs), it is not difficult to show that (C2) and (C3)

are verified. Hence, assertions (i) and (ii) follow from Theorem 3.1. ]

Remark 3.1. Other Ulam stability results for NDE (3.8) can be derived by using
Theorem 3.2.

Another application of Theorem 3.1 concerns Hyers-Ulam—Rassias stability of
the NDE

) =F(t,x(z)) forall e~ (3.11)

Theorem 3.3, Consider the NDE (3.11). Assume that the Jollowing conditions are
satisfied.

(C7) Let F € Cy(I x R, R) and g e ®+(J, ]Rj be such that
L=u(t)q(r) > (q(r)] forall re7.
la(t)|
1—p(t)q
IF(t,0) = F(2,9)] < (Lp(1— pu(r)q(s)) lg(£)]) ] — v|
forallt € J and u,v € R, where q is as given in (Cy).
(Co) There exists m > 0 such that Jor ¢ € A[(J,R)
f "0(s)As < no() forall te]. (3.12)

If(E,Lp(1— u(t)q(t)) — lg())(6—a) < 1, then the Jollowing assertions hold:

(Cg) There exists Ly > o) such that
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92 MARTIN BOHNER AND SANKET TIKARE

(i) The NDE (3.11) has a unigue solution x € CL (I, R) satisfying the initial con-
dition x(a) = A for any initial value A € R.

(ii) The NDE (3.11) has Hyers—Ulam—Rassias stability of type N with HURS
constant Eg(b—a)neg, 1. (b,a).

Proof. Keeping in mind the ‘simple useful formula’ and rearranging the terms, we
rewrite (3.11) as

d©) N o alel)+F ()
20+ (i) 7O = R

forall telJ*
1—p(t)q(t)
L) +p()x°(t) = f(t,x(t)) forall teJ~,
wher‘e. p(t) = l——ff%)m and f(t,x) = ‘*‘g’l’;ﬁF qz;’)‘). Now, it remains to verify the
condition (C,) in Theorem 3.1. From (Cg), we have
|F(t,u) — F(¢,v)| +q(t)|Ju—v| < Lp (1 — p()q())|u—v|
for all t € J and u,v € R. This gives
IF(6,) — F(1,9) + q£) (= )| < Le(1 — (D)) lu—]
for all t € J and u,v € R. Rearranging the terms, we can write
Ft,0)+a@u  Flt,)+q0)v
1-u(t)q(t)  1—p(r)q(r)
for all t € J and u,v € R. That is,
|f(t,u) = f(t,v)] < Lglu—v| forall r€] and wu,veR.

Hence, (Cy) is verified. Now, we are able to apply Theorem 3.1 and obtain that
assertions (i) and (ii) follow from Theorem 3.1.° O

Remark 3.2. Other Ulam stability results for NDE (3.11) can be derived by using
Theorem 3.3.

That is,

SLpluHVE

4, EXAMPLE
Let T =2 and @ =2, b = 32. Then J := [a,b|NT = {2,4,8,16,32}. Consider
the NDE ; (xz( ) 5)1/2
+ :
A1) +55() = t ; :
(r) +x5(2) ) + 3 forall re] 4.1)
with the initial condition x(2) = 2 and the inequality
1 _PO+5)
S (1) — o o ; 4
yA() +6°(t) o 2) 7 <eey (1,2) forall rel% (42)

Here f(t,x(t)) = e,{:,Z) + (xz(,):s}x/: which satisfies (Cp) with Ly = §, and p =+,
u(t) =1 for all t € T. Clearly, 1+u(t)p(t) = 141> > 0. Thus p € R*(J,R). Also,
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ULAM STABILITY FOR FIRST-ORDER NONLINEAR DYNAMIC EQUATIONS 93

i —o(t) =1
S )= b _—
(©p)(e) L+u(t)p(t) 1442
With these values, we obtain

f n(1+u(r) & p)A
1

o)

n( (1+ 2))Ar)
(1))
(i :))

)

AR
::.'\-a

*-:I»—--:i'—-*-ls—-'!‘.:

espltns) = exp

T~

Il
5
)

—
=

=~

=3

l |

Il

[¢]

<

o=
/‘—"'\/'—"\/'_"\

I+r2

Il

g

e~}
— T
IS
o

=

AT

-
/2
:H——_ for s<t and re].

I+72

r=s

This leads to

t/2 1
E, =gy

# s,é} ,I:I1+r2

1
3

Further, we find that E pli(b—a) =11(32-2) = 2 < 1. Thus, all the conditions in
Theorem 3.1 are satisfied. Therefore, (4.1) has a unique solution satisfying initial
condition x(2) = 2. Now, let y Cl4(J,R) be a solution of (4.2). Then, by Remark
2.3, there exists y € Crd(.ﬁ R) such that [y(¢)| < ge 1(t,2) and

/2
0 +157(0) = La0a i

+ +y(r) forall e J* (4.3)

€p (t: 2)
By Lemma 2.2, we have

z/2 /2
¥(t) = 0(2)+r—2)1"[——+ Z(

lrz) O (r) +5)1/

v pp “.4)
+):(”]+r2)qr(s) forall re].

Sz=2

From Theorem 3. 1, we tind that the dynamic problem

2 1/2
xA(t)+rx°(t) p(t 2 ———(r(t)gj) i

x(2) = y(2)

has a unique solution. According to Lemma 2.2, this unique solution is given by

e J¥,
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x(t)=y(2)eep(t,2)+f2reep(r,s)( (1 +(x2(s)+5)1/2)AS

ep(s,2) 8

i s 12
=y(2)egp(t,2) +/2 (e@"’(t’z) +e@p~(t,s)£““(“)‘?;“5‘)‘_) &

= y(2)eap(t,2) +egp(t,2)(t —2) + %/; eelz,(r,s)(x2 (s)+ 5)1/2As
= 0)+1~2ecp(t,2) + 3 / “eopt,)(2(s) +5)/2As

1/2 t/2 ft]2 1
+"2)H1+r2 SZ(H1+,.2)(J«2(f)+5)‘/2-

That is,
I/2 1
x(t} m(y(2)+t_2)HH—_i’2
r=2 4.5)
1:/2 t/2 1 xz i (4.
+§5222 rl;[sm ( ()+5) forall te]

Now, from (4.4) and (4.5), we can write for t € J,

t/2 [1/2
Iy(e) = x(t l<):(1_[1 )Ew(s

i;; /2
._Z(Hl )88116(3,2)
<e—):e1 (s,2)

%
<ezey (32,2)30

Thus, |y(t) —x(¢)] < 6&% (32,2), t € J, which yields that (4.1) has Hyers-Ulam—
Rassias stability of type Al with HURS constant 6e L (32:2).
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