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Abstract

The phenomenon of synchronization in coupled chaotic maps has been studied extensively
by the researchers in nonlinear dynamics for several years. But, there is hardly any study of
the stationary densities of coupled maps as a function of the coupling parameter. Here, we
numerically analyze stationary densities of two nonlinearly coupled tent maps. In the process,
we find that the emergent stationary density can become multifractal even if the stationary
density of the individual maps is smooth. In this work, we study piecewise linear and everywhere
expanding maps as the stationary density for these maps is described by a simple functional
relation. By extensive numerical simulations we find that for this class of maps the multifractal
spectrum is universal and does not seem to change with the coupling or map parameters.
The existence of this multifractal nature is not surprising, a posteriori, as it is known the
densities satisfying similar functional relation are known to be multifractal but the form of the
multifractal spectrum here is intriguing as it does not seem to conform to the existing theory
of multifractal functions.
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1. INTRODUCTION

Studying coupled nonlinear systems has immense
importance owing to wide ranging applications and
phenomena including synchronization.! As a result,
coupled nonlinear systems have been an active area
of research for more than 30 years. Coupling of non-
linear systems can introduce additional twists lead-
ing to a more complex phase space. Nevertheless,
there exists an invariant measure or a stationary
density which allows statistical characterization of
the irregular dynamics of the system. Thercfore, it
is natural to study the stationary densities of cou-
pled systems as a function of the coupling param-
eter. However, not much understanding has been
obtained on the effect of coupling on the stationary
density and, in turn, its use in studying synchro-
nization, except for the following two papers. In Ref.
2, the multifractal characteristic of the coupled lat-
tice of Hénon maps was studied for a small range
of coupling parameters wherein the individual map
is known to have fractal characteristics and, in Ref.
3, the invariant measure of a chain of coupled maps
was studied but not its multifractal nature. Keep-
ing this in mind we analyze the stationary density
of simple coupled systems, their multifractal nature
and their dependence on the coupling parameter.
The fractal dimension?” provides a tool to cap-
ture the irregularity of a set, here the graph of a
function, arising as a result of a nonlinear process.
It is also well known that at times the dimension
can be insufficient to characterize the irregularity
completely and a spectrum of dimensions, called the
multifractal spectrum, might be needed. The mul-
tifractal spectrum, at least in some cases, gives the
dimension of a set on which we have a given Holder
exponent which is defined as follows: the Holder
exponent of a function p(x) at zq is defined as the
largest value of h, where 0 < h < 1 (it is possible to
extend the definition beyond this range), such that

lo(x) = p(a0)| < Cla — @o|"
for some constant C'. According to this definition,
a discontinuity in a function corresponds to the
Hélder exponent equal to zero and for a smooth
function it is one everywhere.

The celebrated example of the multifractal
function is, of course, the velocity field of a tur-
bulent fluid. Frisch and Parisi® developed the struc-
ture function formalism to obtain the multifractal
spectrum of a function. Since then, the multifractal
approach has become standard in several fields.?'0
The essence of the method of Frisch and Parisi was

to assume the following scaling:
56.0) = [ Io(e+0) = plolvda ~ 590, ()

for small §, and then obtain the singularity spec-
trum D(h) by Legendre transformation of ((g).
Here, D(h) reflects the dimension of the set of
points where the Hoélder exponent of the function
is h (this is equivalent to the function f(e) used in
the multifractal formalism for measures). This way
of obtaining the singularity spectrum is known as
the structure function approach to the multifractal
formalism.

Detecting the multifractality in experimental or
numerical data has been a challenge. Though the
structure function method was a good theoretical
approach, it was limited as a computational tool.
To overcome this difficulty, a method using wavelet
transforins was developed and successively modified
for better performance. The essential idea was to
use the wavelet coefficients C'(a,b), where a is the
scale and b is the position, in the integral above and
define S(a, q) as follows:

S(wq) = [ [Cabyd, )

With the assumption that $(a,q) ~ a@, the sin-
gularity spectrum is obtained by taking the Leg-
endre transform of ¢(¢). Muzy et al.'''? refined
this method further. The new method, called the
wavelet transform modulus maxima (WTMM),
defines the partition function S(«a,q) as

S(a,q) = sup |C(a,b)]?, (3)
Z,: (b=1(a)

where [ is a local maxima line of the wavelet trans-
form and the sum is taken over this discrete set of
maxima lines. This method has been used exten-
sively in various applications.!13

Later, a new method using wavelet leaders'®1?
was been proposed which was shown to be more effi-
cient than WTMM. The method of calculating the
multifractal spectra using wavelet leaders!®!® has
the same basic structure as the WTMM method.'?
There is one key difference in how the partition
functions are calculated. Instead of using the local
maxima of the modulus of the continuous wavelet
transform in WTMM, wavelet leaders use discrete
wavelet transforms (DWTs) and calculate the par-
tition function by finding the leader of the wavelet
transform. If e(a, ») is a wavelet coefficient then the
wavelet leader L(a,2) is its faeminfiddd mgound
a over all scales smaller than TRUPWC@R'Y and
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x = 27k). Now, if S(a, q) gives the gth order moment
of wavelet leaders then we have S(a,q) ~ a¢@ and
the dimension D(h) is given by the Legendre trans-
form of ((g). Wavelet leaders have been used in var-
ious applications.1®

On the other hand, mathematicians have devel-
oped an extensive multifractal formalism for a class
of measures, or more generally functions, satisfying
certain conditions' "2 in which a direct formula for
the dimension spectrum can be written down from
the parameters of the transformations. Using this
formula the multifractal spectrum is constructed.
For example, Jaffard!? defined a class of functions
called self-similar functions which are solutions of a
functional equation of the type

Z/\RF(S

where S;s are compositions of an isometry with the
mapping & — w;x with || < 1. Several conditions
are needed on the transformations S;s and the func-
tion g(z). The important one being that the S;s
satisfy the open set condition (OSC). That is, there
exists a bounded open set € such that S;(Q?) C Q
and S;(2) N S;(2) = 0 if i # j. Also, it is assumed
that the pu;s scale by the same factor in all directions
in higher dimensions. Then it was shown that the
dimension spectrum can be obtained in terms of the
Ais and pis. In particular the smallest v').hw of the
Holder exponent is given by Ay, = inf ]—s-—t and
the largest value of the Holder exponent is given by

s log Ai
hiax = sSup E;g;ﬁ

z)) + 9(x), (4)

2. MULTIFRACTAL NATURE OF
THE STATIONARY DENSITIES

Our system consists of a nonlinear map f(z) which
is a function from [0,1] to [0, 1]. We consider two
such identical maps coupled to each other as follows:

Tpi1 = (1 =€) f(xn) + €f(Yn), (5)

Yn+1 = €f(xn) + (1 — €) f(yn)s

where € is the coupling parameter. If we write X =
(2,9)7, a two-dimensional column vector, then the
above set of equations defines a transformation T
such that

Xnt1 = T(Xn). (6)
We obtain the stationary density by starting
from a uniform distribution over the whole of phase

space 2 and letting this density evolve according to
the dynamics. We discard first 1000 iterations. In

2250040-3
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order to have better statistics, here we restrict our-
selves to the cross-section of this stationary density
along the synchronization manifold, that is, the line
x = y. This amounts to then counting the instances
when the trajectory lies in a strip of size 2§ around
the line = y. We have chosen § = 27® through-
out after verifying that doubling the size does not
change the results much.

In order to rule out any effect of the finiteness
of the floating point representation we have car-
ried out our simulations using an infinite precision
arithmetic as provided by a type bigfloat in Julia?!
implemented using MPFR libraries. We have taken
care to choose the number of bits in the floating
point representation twice as that of the number of
map operations on any initial condition (the num-
ber of map operations on any initial condition was
less than 5000 and the number of bits in the floating
point representation was chosen as 10,000). It has
also been verified that our results remain the same
by choosing the number of bits larger than this.

The stationary densities of several of the stan-
dard maps, like the logistic map at p = 4, the tent
map or the skewed tent map are known to be uni-
form or a simple smooth function (except at a few
points). Here, we observe that as soon as two copies
of any of these maps are coupled nonlinearly, even
with a very small coupling parameter, we obtain a
very complex invariant density. Figure 1 depicts the
cross-sections of the stationary densities along the
synchronization manifold for four different choices
of coupled identical maps.

In the case of the logistic map (u = 4), it is known
that the invariant density has square root singular-
ities at = 0 and x = 1 and is smooth for all
other intermediate values of x but for the coupled
logistic maps (both with p = 4) the stationary den-
sity is irregular throughout the interval. One can
notice that the singularities are spread throughout
the interval. The stationary density of the tent map
is uniform but after coupling two tent maps it too
becomes very irregular. In fact, its fractal nature
was first pointed out in Ref. 22. One can also notice
some discontinuities in the density. These singular-
ities arise because of the discontinuity of the initial
distribution at the boundaries. In Ref. 23, the sup-
port of this invariant measure was used to carry
out a global analysis of synchronization. One can
understand the origin of these discontinuities from
the analysis carried out there. Similar observations
are valid for the asfiew¢ifitaddnphgap and the bit
shift map. TRUE COPY
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Fig. 1 Examples of the stationary densities of coupled ‘-.yqt(‘ma on synchronization manifold (a) logistic map with g = 4,
(b) symmetric tent map, (¢) asymmetric tent map with a = 0.1 and (d) bit shift map. ¢ = 0.08, there are 4 x 10° points on

the synchronization manifold and 12,000 bins.

We carried out a multifractal analysis of these
stationary densities restricted to the synchroniza-
tion manifold. It should be emphasized that it was
the stationary density treated as a function that
was analyzed and not its integrated measure. We
first used the WTMM method but it turned out to
be inadequate for these highly self-affine graphs of
the functions. Then we used the newly developed
method using wavelet leaders.
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2.1. Results

We first consider the symmetric tent map defined
by

2 0<e<1/2,
2-2z 1/2<xz<],

with two of them coupled as described in Eq. (5).

Figure 2 shows the pesults of the multifractal
ackoie o ertifle
analysis of the station & &

flz) =

js map for

Ramuiranjan : --;_Lw.ﬁa College,
Ghatkopar L ), Mumbai-400086.




e = (.1 using the wavelet leaders method. In Fig. 2a,
we show a log-log plot of S(a, q) versus a for differ-
ent values of g. The power law scaling is clearly
visible. Then in Fig. 2b, we show the (, which
are given by the slopes of the straight line fits in
Fig. 2a. The dimension spectra, obtained as the
Legendre transform of (,, are plotted in Fig. 2¢ for

(a)
1 .
c
075 | 1
05 |
025 |
0 i i " i
0 025 05 075 1

()

Universal Multifractal Stationary Densities

different choices of the total number of points. Fig-
ure 2d depicts the spectra for different sizes of the
bins. The convergence is clearly visible. In order to
further confirm the multifractal nature of the spec-
tra, we have estimated the error bars in two dif-
ferent ways as depicted in Figs. 2e and 2f. In the
first method, we took 12 different data sets of the

/

05 | AT

e

075

05 §

025

0 025 0.5 0.75 1

()

Fig. 2 The multifractal spectrum for the coupled tent maps with e = 0.08. (a) S(a,q) versus a plotted for dif‘fe.rent values
of g (—10 to +10), (b) {(q) versus g, (c) the dimension spectrum for ditZerent valuesrof N, the nuglber of points on the
synchronization manifold but the same number of bins (=4000) (+ —4 x 10°, x -8 x 107, * —1.2 x 10 ). (d) The dimension
spectrum for different number of bins (+ —2000, x —4000, * —8000 and [ —~16,000) with 1.2 x 108 number of poipts on
the synchronization manifold. (e) The error bars estimated using standard deviation over 12 different spectra by using 12

different data of 1 x 10% points and 12,000 bins. (f) Confidence intervals generated by ndo
implemented in the wavelet leader toolbox.* This is a clear numerical evidence that t!TRBEa etvf

strap procedure as
actal.
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same size (10° points) and thus generated 12 differ-
ent spectra with 12,000 bins. Figure 2e shows the
error bars estimated from the standard deviations
of h values and corresponding D(h) values. Fig-
ure 2f shows the confidence intervals generated by
the non-parametric bootstrap procedure provided
by the wavelet leader toolbox.!4 This is convincing
numerical evidence that the spectra are indeed mul-
tifractal.

In order to ascertain the role of statistical fluctu-
ations, we analyzed the stationary density by mak-
ing the coupling constant zero. In this case, we had
pure statistical fluctuations in our data. When we
carried out the multifractal analysis of this data we
did not find power law scaling for S(a, ¢). When fur-
ther steps are carried out by fitting a straight line to
whatever log-log plot of S(a, ¢) and ¢ was obtained,
it resulted in a spectrum consisting of a cluster of
points. This cluster of points seemed to approach
the point (0,1). Hence one could conclude that no
multifractal spectrum was observed when the cou-
pling was zero. This implies that the multifractal
spectrum that we observed originated purely from
the dynamics that the coupling between the maps
had introduced.

As we have observed above, we expect the sta-
tionary density of the coupled tent map to have
discontinuities at a countable number of points. As
explained below, the discontinuity in a function cor-
responds to a Holder exponent equal to zero and

2250040-6
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( Continued)

the countable set of points has dimension zero. As a
result, one would expect the dimension spectrum to
pass through the point (0, 0) which, we note, seems
to be the case. It can also be seen that there is no
Holder exponent greater than 0.5 which is consis-
tent with the very irregular nature of the graph in
Fig. Ib. What is more surprising is the fact that the
spectrum seems to be very robust with changing the
coupling parameter. As shown in Fig. 3a, there is
hardly any change in the spectrum as the coupling
parameter € is varied.

Before we proceed, we would like to bring to
attention a related fact. As has been pointed out
before, in the case of stationary density of the logis-
tic map (Fig. 1a), there are stronger singularities
spread throughout the interval. As a result, one
expects that the spectrum would cross over to the
negative side and not pass through the point (0,0).
Our preliminary analysis indeed confirms this.

Now, we consider the asymmetric tent map
defined by

T
"y OS:C(Q,
@
fa(‘T)= 1__1,
—, a<z <1,
l—a

where a is the skew-factor. It is known that though
a single skewed tent map is chaotic it has uniform
invariant measure.?® In light of this, it is surpris-
ing that as soon as we int[gﬁ,} g
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(here € = 0.08) the resultant stationary density is  for a fixed value of a and different values of e.
multifractal as is shown in Figs. 3¢ and 3d. Fig-  As one notices, the spectra are robust in this case
ure 3¢ depicts the spectra for different values the  too.

skewness parameter a and a fixed value of the Our next choice of the map is the symmetric bit
coupling constant ¢ and Fig. 3d shows the spectra  shift map which is also called the Bernoulli map. It

0.4 086 08 1 06 08 1
(a) (b)
0 L L " L 0 L L n L
0 02 04 06 08 1 0 0.2 0.4 06 08 1
(c) (d)

Fig. 3 The multifractal spectra for (a) the symmetric tent map with varying € (+ —0.08, x —0.12, x —0.16, 0 —0.20), (b)
the bit shift maps for different coupling constants € (+ —0.08, x —0.12, * —0.16, 0 —0.20), (c) the asymmetric tent map with
different skewness parameter (+ —0.1, x —0.2, * —0.3, O —0.4) and fixed coupling constant ¢ = 0.08, (d) the asymmetric
tent map with different coupling constants ¢ (+ —0.08, x —0.12, * ~0.16, [J ~0.20) and fixed skewness parameter a = 0.4,
(e) the asymmetric bit shift map for fixed asymmetry (A = 0.06) and different couplings € (+ —0.08, x —0.12, ¥ —0.16, O
—0.20), (f) the asymmetric bit shift map for the same coupling (¢ = 0.08) and different skewness parameter A (+ —0.04, x
—0.06, * —0.08 and O —0.10). The number of bins used in all these sub-figures is 12,000 and the number of points on the
synchronization manifold are >107. ertiﬂﬁd as

TRUE COPy
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Fig. 3 (Continued)
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(e)
is defined by
2z, 0<z<1/2,
fz) = )
2c—1, 1/2<z< 1.

This map too shows multifractal character in the
stationary density when coupled (Fig. 3b). Even in
this case there is no variation in the spectra as the
coupling parameter is varied.

Now, we introduce an asymmetry?® in this map
and consider the skewed bit shift map defined by

T
05"

x  05-A
054+A 05+A°

0<2<05-A,
flz)=

05 -A<ze<l,

where A is a parameter characterizing the asym-
metry. The stationary density of this map too has
multifractal nature when two of them are coupled
together. This is shown in Figs. 3e and 3f. In this
case too the spectra do not change on varying e
(Fig. 3e) nor with varying the skewness parameter

A (Fig. 3f).

3. MATHEMATICAL ANALYSIS

It is necessary to understand these findings through
a mathematical analysis of these measures. The
invariant measure can be calculated by using the

Frobenius-Perron operator P : L' — L'26 which is
defined as

/ f Pp(a',y)da'dy' = / / p(a’,y)dz'dy’,
JJp JJr-1D)
(7)

where T is as in Eq. (6). If we choose D = [0, 2] x
[0,y] then we get

- ﬂﬂ 1IN g )
Pp(z,y) = 9z Oy f/T_I(D) p(a’,y)de'dy'.  (8)

The maps we have chosen are not invertible, there-
fore T" is also not invertible. For all the maps under
consideration, T' consists of four disjoint parts. We
denote them by T,-'l‘ i=1,...,4 If X € Q =
[0,1] x [0,1], since f is not in general symmetric, we
get

Pp(X) = J7 ' (X)p(T7 M (X)),  (9)
i=1
where J; 1(X) = |dT;'(X)/dX|. The fixed point

of this operator leads us to the stationary density.
Therefore, we have

4
p(X) =Y I XTI X).  (10)
i=1

It is known that a functional relation of this type
leads to solutions willertilfi&abtaly characteris-
tics. ™19 TRUE COPY
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If we choose S; = Tl-_l, this equation is of similar
form to Eq. (4) used by Jaffard to define self-similar
functions. To the best of our knowledge, Jaffard’s
theory of multifractal functions seems closest to the
situation we have for the stationary density of cou-
pled maps. However, as we shall discuss now, this
available theory is still not adequate for our pur-
pose as our multifractal spectra do not correspond
to the results obtained here.

First, Jaffard’s multifractal formalism for self-
similar functions stipulates a nonzero minimum
value for the Holder exponent h given by the small-
est value of log A\;/ log jz; but in our case this small-
est value is zero though none of our A;s (J; WA
are equal to one. Moreover, in the case of symmetric
maps, a priori, one would not expect a multifractal
structure as the values of A;s and p; are the same for
all i. More importantly, one would expect substan-
tial variation in the multifractal spectrum with the
change in the coupling constant € and the skewness
parameter (@ and A) as that leads to the change
in the values of the A\;s and ;8. But that does not
seem to happen. As a result, we come to the con-
clusion that this theory of multifractal functions is
not able to capture at least the essential features of
our findings.

It is necessary to understand the reasons of this
failure to apply the existing theory. As it was men-
tioned before, there are several assumptions made
in deriving the theory of multifractal spectra. Some
of these assumptions are violated in our case. The
first assumption is that S;(Q2) C Q. Figure 4 shows
the sketches of S;(Q) for i = 1,...,4 for both
the tent and the bit shift map. We can clearly
see the portions going out of €. Also, there is an
important assumption called 0SC!? which says that
5;(92) N S;() = 0. Again, Fig. 4 shows that there

abl

S4
%
—— et
e ﬁ?

(a) (b)

Fig. 4 Sketches showing the overlap between different
T‘-’l(ﬂ) for symmetric (a) tent map and (b) bit shift map.

2250040-9
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is a significant overlap between the images of differ-
ent S;s applied to €. Another important assump-
tion is that of isotropy which is not satisfied in the
present models. We observe from Fig. 4 that the
contraction ratios are different in the direction of
the synchronization manifold and in the direction
perpendicular to it. There is some work?"28 to lift
these restrictions but that too does not seem to be
sufficient for our case.

It should also be pointed out that there have
been some studies dealing with overlaps in the IFS
especially by Hochman.?® These have led to works
on multifractal formalism of some IFS with over-
laps.303! However, Ref. 30 deals with a special class
of one-dimensional measures, k-fold convolutions of
Cantor-type measures, and Ref. 31 considers higher-
dimensional systems but isotropic. Therefore, these
results are not applicable here directly. They defi-
nitely give a direction for future exploration.

This suggests that a new mathematical theory
which goes beyond these assumptions needs to be
developed in order to account for the findings in this
work.

4. CONCLUDING DISCUSSION

In the process of developing statistical understand-
ing of coupled chaotic systems, we have uncovered
a feature of the invariant density of two simple
coupled chaotic maps. Our numerical results sug-
gest that though the stationary density of the cho-
sen individual map is usually a simple function, it
becomes multifractal when two such maps are cou-
pled. In spite of the fact that such systems have
been studied extensively somehow this aspect was
never explored. We have numerically studied sym-
metric and asymmetric tent maps as well as sym-
metric and asymmetric bit shift maps. It would
have been natural to expect a systematic varia-
tion of the multifractal spectra with the coupling
parameter or the asymmetry parameter, however,
we find very robust spectra. This implies that there
exists a universality class to which our examples
belong. More investigations are needed to under-
stand these observations including the extent of
this universality class. As our preliminary numerical
investigations have shown, the stationary density of
the logistic map does not seem to lie in this class.
We intend to analyze more complex maps with dif-
ferent couplings, diffgrent continuous systems and
also non-identical (ﬁ F@ﬁﬁdﬂﬂs
[RUE COPY
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In order to rationalize the multifractal spectra
that we observe, we formally arrived at a functional
relation satisfied by the stationary density. By com-
paring the existing results for a similar functional
relation, we find that the multifractal spectra we
observe do not conform to those of the existing the-
ory. Possibly, it is a result of violations of some
assumptions in the theory, the important ones being
those of overlap between different contractions of {2
and the anisotropy in these contractions. Also, the
discontinuities at the boundaries introduced by the
initial uniform distribution could also have a role
to play. However, more analysis is needed to decide
which of these reasons are crucial to the systems
under study.
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