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Here the theory of local fractional differential equations is extended to a more general class of equations
akin to usual exact differential equations. In the process, a new notion has been introduced which is
termed as a-exact local fractional differential equation. The theory of such equations parallels that for
the first order ordinary differential equations. A criterion to check the a:-exactness emerges naturally and

also a method to find general solutions of such equations. This development completes the basic theory
of the local fractional differential equations. The solved examples demonstrate how complex functions
arise as solutions which will be useful in understanding the processes taking place on fractals.
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1. Introduction

Ordinary differential equations played an important role in
Mathematics as well as in several other fields where they found
applications. During the development of calculus, the idea of
derivatives of non-integer orders [1,2] was also proposed and, soon
after the confusion surrounding its definition was cleared, the
differential equations of fractional order [34] were also consid-
ered. These equations too have been applied in modelling various
physical phenomena involving a long term memory [5~8]. There
are multitude of definitions of the derivatives of fractional order
which makes it necessary to study fractional differential equa-
tions using these different definitions and understand which situ-
ations can be better described by them. We had introduced a ver-
sion of the fractional derivative termed as local fractional derivative
(LFD) [9] which also led to the introduction of the local fractional
differential equations (LFDE) involving these LFDs.

However, since the LFD has some properties which are quite
different as compared to the other definitions, the equations in-
volving them turn out to have a very different meaning and need
to be interpreted very carefully. This makes the development lit-
tle slow. As a result, though the first simple case was introduced
in [10], the next development happened only in [11]. In [10], a gen-
eralisation of the simplest first order differential equation in which
the unknown function depends only on the independent variable
was carried out. The generalisation consisted of replacing the first
order derivative with the LFD of order between 0 and 1. Interest-
ingly this led to a new kind of equations in which one could incor-
porate phenomena on fractals [12] and solve the equation mean-
ingfully. In the same work, the equation was applied to diffusion
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taking place in fractal time. The next step was to extend the the-
ory of LFDEs to cases in which the unknown function depends on
the dependent variable too. In [11], it was extended to separable
local fractional differential equations. The present work takes the
next important step in this program and develops the theory for
exact LFDEs and thus, in a sense, completes the formal develop-
ment of generalisation of the first order differential equations to
the ones involving the LFD.

The organization of the paper is as follows. The next section
gives a quick introduction to the previous developments which
helps in defining the symbols and also to collect important facts
needed later in the work. In Section 3 I introduce the concept
through some examples and in Section 4 the theory is developed.
A plausible physical application is considered in Section 5. Then, in
the last section, there are some concluding remarks.

2. Local fractional derivative

In [9], the following definition of LFD was introduced:

PO _ i py(r) - f0) ©<q< 1) M
x4 X' —x
where
. 1 d ( 2
Difx) = myl{ Ft)(x' —t)-9dt, (2)

is the Riemann-Liouville fractional derivative of order g. Notice that
the notation for the LFD has been changed. The order g does not
appear in the numerator as there is only a first order difference
of f. This notation will turn out to be convenient later in the
paper when we generalise the notion of exactness. The reader is
requested to refer to [13] for more insights about this definition

nd sg rked out examples. Important points to remember
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are in order. Firstly, the LFD of a differentiable function is zero
so it makes sense only to apply it to nondifferentiable functions.
Secondly, the order of the derivative also has to be chosen equal
to a critical order which is equal to the local Hélder exponent
of the function at which the LFD is being evaluated. This defini-
tion was applied to a everywhere continuous but nowhere differ-
entiable function and shown that the LFD is zero for orders less
than the critical order and does not exist for orders greater.

It is difficult to establish what happens exactly at the critical
order owing to the intrinsic oscillations any such function has [14].
Here it is assumed that one would be able to get around this prob-
lem either by taking some average behaviour or by somehow in-
corporating a way to take care of the oscillations into the defini-
tion itself. At the moment, the theory is developed symbolically
assuming that there is a way to assign a finite value to the LFD at
the critical order. It would be of interest to explore what kind of
mathematical structure unfolds and also the possible applications
this developments will have.

With this in mind, it is interesting to note some of the proper-
ties the LFD possesses which would be crucial to the developments
ahead. The LFD admits a local fractional Taylor expansion [9]

e 1T dfe) v
f{x}_f{x)+“ﬁ(¢:;-|-_l]w(x —x)7 4 Ry(X'. x) (3)
where Rg(x'.x) is a remainder term., It also satisfies the usual Leib-
nitz rule and the chain rule [15-17].

The next step is to consider differential equations involving the
LFD and the simplest such equation is

dy
7@ = %) (4)

where 0 < @ < 1. This equation was introduced in [10]. We write
the solution of this equation using a generalisation of Riemann
sum:
N-1
. Kig1 =X ¢ .
y(x) ~,31_§g°§ NCES TR (5)
where x; < x* < X;;q. The factor (x;.q —x;))*/I' (@ + 1) has origins
in the local fractional Taylor expansion (Eq. (3}). Now, a close in-
spection of the solution in (5) tells us that the solution can not ex-
ist if f(x) is a continuous function [13]. One possibility when the
solution exists is when the function f(x) has a fractal support. It
can be argued that if the dimension of the fractal support is equal
to the order of the derivative then a finite solution exist. In partic-
ular, if f(x) = 1¢(x), the indicator function of the fractal set C, then
the solution is given by
Fe(x)

N-1
n (Xig1 = X)% o _ it
y(")‘ﬁﬂg T@+1) €= T@+D =L ® (6)

where Fc" is a flag function which takes value 1 if the interval
[i. X;+1] contains a point of the set C and O otherwise, Here, Fc(x)
is a Lebesgue-Cantor (staircase) function which is constant almost
everywhere and rises only at points of the Cantor set C. This ap-
proach has been applied to Continuum Mechanics of disordered
media [18-22].

Of course, more generally, one can choose f(x) to be a prod-
uct of any function and the indicator function. In this case too,
the solution can be seen to exist. The next step is to consider f
to depend on the dependent variable too. In [11], progress in this
direction was made by considering separable local fractional dif-
ferential equations. Since the LFD follows the chain rule, theory for
this class of equations paralleled that for the ordinary differential
equations. Moreover, it was not necessary to put any condition on

the part depending on the dependent variable as was ;& casg Jﬁ-ﬁ d

that depending on the independent variable (that it
fractal support) for the solution to exist.
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Now the new challenge is to extend the theory further, that is,
to explore if a notion parallel to exactness of the ordinary differ-
ential equation can be meaningfully evolved.

3. Exact local fractional differential equations: understanding
through examples

In this section, we show that the notion of exactness of the or-
dinary differential equations can be generalised and the theory can
be extended to apply even to the local fractional differential equa-
tions. It parallels the theory of exact differential equations for the
ordinary differential equations but the functions involved have to
be chosen carefully. | demonstrate the point through examples. For
this purpose, first the LFDE is written as follows:

M(x.y)dx* 4+ N(x,y)dy = 0. (7)
Clearly, this is equivalent to the LFDE

dy  M@xy)

dx* ~ T N(x.y)’ ®)

If N(x.y)=1 and M(x,y) = f(x) then this equation is same as
Eq. (4), so we know that f(x) and hence M(x,y) should have a
fractal support in x. Further, when M(x,y) is a product of two
functions f(x) and g(y), we know how to solve it under the same
condition on f(x). But for more general M(x.y) and nonseparable
N(x.y), it is not clear under which conditions, if any, a nontrivial
solution would exist.

A useful hint is obtained from the following observation. In or-
der to write an exact differential on the LHS of Eq. {7), we would
have to write M as partial LFD of some f w. r. t. x and N as par-
tial derivative of the same f w. r. t. y. Therefore to check for the
exactness we would need to take the partial derivative of M w. .
t. y and a partial LFD of N w. r. t. x. Therefore, we see that, the N
should be such that it would make sense after taking its LFD. One
example of such a function is F (x).

So keeping this in mind let's consider couple of examples. The
development of a proper theory is postponed to the next section.
Our first example is the following simple looking equation but in-
volves a major step forward.

1c(x)ydx® +B% (x)dy = 0. (9)

The function Fg(x) which was the solution of the simplest LFDE
we considered in the last section now appears in our differential
equation. Written out in a normal form it looks like

dy _ 1cX)y
e~ TR

(10)

It is unclear how one could solve this equation. We'll develop the
method in the next section but for now it can be checked that

C
) 7

solves the above equation.
Now let us consider another example of an equation which
looks more complicated.

Te(X)ydx® + ((PE (x))*y — P (x))dy = 0 (12)

In the next sections, we'll show that the solution of this equation
is given by

vy y
T'Fg‘(x“)‘c (13)

ghese examples demonstrate that if one chooses the functions
) and N(x, y) correctly one can have meaningful solutions to

TRUE CQ e LFDE allowing one to expand the class of solutions.
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4. Theory of exact local fractional differential equation

In this section, | develop the theory for exact local fractional
differential equations. So consider the equation of the type

M(x, y)dx* + N(x,y)dy = 0. (14)
and assume that there exist f(x.y) such that

af _ of

W_M and B_y“N (15)
Then Eq. {14) can be written as

af af . _

Fdx“ + B_ydy =0 or df=0. (16)
Therefore the general solution is given by

fy) =c

We can call the differential equation as a-exact in order to show
the dependence on . Now, in order to get the condition for o-
exactness, it is assumed that f(x,y) is a smooth function of y and
locally fractionally differentiable function of order & of x so that
the mixed derivatives of f are equal, that is,

i -
dydxe — ax«dy’
This implies that the condition to check for «-exactness becomes

(17)

m_ N
dy — oxe’
Now to find f, we integrate the first of Eq. (15) to obtain

i f Md®x + (). (19)

To find the unknown function g(y), we differentiate this f w. r. t.
y and equate it to N to obtain

gw) =N—%fMd"x, (20)

and hence

g2(y) = f (N— % f Md“x)dy. 1)

In essence, it is shown that if the differential equation is «-exact
then the condition (15) is true. The converse can also to be seen to
be true. Moreover, it is shown that, in this case, its general solution
is given by f(x,y) =c.

The next question deals with what happens if the LFDE is not
exact. Can we find an integrating factor p(x.y), and under which
conditions, that we can multiply to make the LFDE exact? In order
to answer this question, we multiply the differential equation by
. Then we have

(18)

UM (x, y)dx® + uN(x.y)dy =0 (22)
and

f _ af _

i 1“M and e uN (23)

Therefore the condition for e-exactness becomes
d(uM) _ 3(uN)

dy - oOx«
which, on expansion, becomes
oM du _ON n
Nﬁf—i_MFf ——P‘va_xo. +N%‘

(24)
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On rearranging, we get the following partial differential equation
satisfied by p

1 o du dM ON
—(Ne=-M— | =5 - . 26
7 (N dx« ay dy  dx= (26)
Any particular solution of this equation will give us the necessary
integrating factor.

Now let us consider the first example, Eq. (9), of the last sec-
tion. It can be checked that this equation is «-exact, that is,

LR 27)

dy  ox@

Therefore the solution can be found using Egs. (19) and (21).
Therefore we have

fise f Md“x +g(y) = PE (x)y +&(y) (28)
where
d «

£0) =f(N—5}fMd x)dy

=0, (29)
This leads to
f=PEy=c (e
and therefore

c

. (31)

Now let us consider the second example, that is, Eq. (12). It can
be checked that it is not az-exact so we assume that the integrating
factor depends only on x and construct the quantity

- _ 1

N 08 (32)
Therefore, solving the Eq. (26), the integrating factor is
s 8-2,-' éﬂ%d"x _ e-zlnPg(x) - (Pg(x))-l‘
With this the Eq. (12} becomes
(PE ()2 1c(X)ydx + (P (X)) ((FE (x))* — Fe(x))dy = 0
and, using Eqs. (19) and (21), we get
Y
f= 7 TE® (33)

5. A plausible physical example

In order to illustrate the importance of this formalism, 1 con-
sider an example motivated by a physical situation. Let us consider
a variable mass system with no external force and moving with
a non-zero velocity with respect to some frame of reference. The
mass is being added to the system but the process of addition of
mass takes place in fractal time. More specifically, we have

%;-2— = 1c(t). (34)
This is possible when, for example, the addition of mass is a re-
sult of ejection from some self-organized critical process. So the
masses are added intermittently with the time intervals distributed
according to a power law. Therefore the total mass at time t is
given by

m(t) = mo + P& (t) = mg(t) (35)

where myg is the mass of the system at t = 0. Now, clearly, ordinary
calculus can not handle such a singular function and hence we can
not use the Newton's law given in the usual form.
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Fig. 1. The figure shows how the velocity (q. (39)) of an object would decrease when its mass increases intermittently on fractal time. Here the initial mass mg is chosen

to be 1. The underlying fractal set is the middle-third Cantor set.

Let us assume that a “renormalized” Newton's second law is
valid and we have for our system

dp

—— =0 36
T (36)
where p = mv is the usual momentum. This leads us to

dm dv

WU 8 mat_‘* =0. (37)
Using Egs. (34) and (35), we get

1e(t)vdt® + mg (t)dv =0. (38)

Now this is a differential equation which is the same as our first
example. So we get the solution as

where vy is the velocity at t = 0. We see that the velocity decreases
asymptotically as a power law in time. The velocity has been de-
picted in Fig. 1 for mg = 1 on the middle-third Cantor set.

(39)

6. Concluding remarks and future directions

In this article, we have extended the theory of local fractional
differential equations to include “exact" equations. This completes
the basic theory of the ordinary LFDEs. In the process, the concept
of exact equations has been generalised to that of a-exact equa-
tions.

This was an important step further as it greatly expanded the
types of equations one can consider and also the types of functions
we can obtain as solutions. It was also a difficult step as it involved
the realisation that the Lebesgue-Cantor staircase function, which
was previously obtained as a solution of the simple LFDE, can be
used in the equation itself to enlarge the class of equations and
hence solutions.

This is also an important development from the point of view
of applications as it paves a way to obtain complicated functions

on fractal sets useful in many processes involving fractals, like dif-
fusion or waves on fractals.

In this paper, we have considered the LFDE only for orders be-
tween 0 and 1. Here, it should be emphasized that the LFD does
not satisfy the rule of composition and one can not consider the
LFDE for higher orders. Moreover, the LFDE can be written only at
the critical order. But this may not be a serious drawback as one
can still consider a system of LFDEs thereby studying such equa-
tions in higher dimensions.

The importance of this work also lies in the new questions it
has opened up. It suggests a way to generalise the divergence and
curl operators leading to a generalisation of differential calculus. It
also suggests a way to mathematically generalise the definition of
the LFD. This stems from the observation that the way the LFDE
has been written in this work has an asymmetric character. Only
one of the differential has a fractional power. It would be inter-
esting to wonder the meaning, provided there is an application, of
making both differentials fractional.
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