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Abstract

The objective of this paper is to study the existence of solutions for two classes of dynamic
initial value problems in Banach spaces. Our approach is based on the concept of measure
of noncompactness and fixed point theorems of Sadovskii and Monch. We provide some
new examples to illustrate our results.

Keywords Dynamic equations - Local and nonlocal conditions - Fixed point theorems -
Measure of noncompactness

Mathematics Subject Classification 34N05 - 34A12 - 47H10 - 47H08

1 Introduction

Dynamic equations on time scales play a significant role in the mathematical model-
ling of numerous real-world phenomena involving continuous and discrete data simul-
taneously, for example, in population dynamics [20, 37], in economics [3, 4], in con-
trol theory [24, 34], and in optimization [36]. In recent years, the theory of dynamic
equations on time scales has been extensively investigated by several researchers.
The sphere of study of dynamic equations covers various aspects like qualitative and
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quantitative properties of solutions, stability of solutions, controllability of solutions,
and applications in various areas of applied science and engineering [5, 17, 18, 22, 24,
29, 36], to mention a few.

It is well known that dynamic equations on time scales are an excellent tool for
modelling any real-world phenomena that contain discrete and continuous-time data
simultaneously. Motivated by numerous applications of dynamic equations in various
areas of applied science, engineering, and technology, in this paper, we study the exist-
ence of solutions of two classes of dynamic first-order initial value problems. We first
discuss the existence of solutions to the dynamic first-order local initial value problem

X +pOx” =f(t,x), teI:
X0) =4, M

where A € X is a given constant.

It is well known that, in various modelling, equations coupled with nonlocal condi-
tions give better results than those with local conditions. Also, in [2, 10, 11, 31], the
authors studied some classes of nonlocal initial value problems for dynamic equations.
Motivated by the work of the above papers, we next discuss the existence of solutions
of the dynamic first-order nonlocal initial value problem

X +pOx® =f(t,x), teI*;
x0) = &), (2)

where @ : C(Z,X) — X is continuous. Here, C(Z,X) denotes the family of continuous
functions from Z to X. In (1) and (2), x is the unknown function to be found, x4 represents
the delta derivative of x, x* = xo0, f : TXX = X may be a nonlinear function, p : Z — R
is regressive and rd-continuous, X is a Banach space, and 7* =T\ (p(sup Z), supZ] if
supZ < oo otherwise 7% = 7.

In the literature, several methods have been employed to study the existence of solu-
tions to dynamic equations on time scales. The approach of using fixed point theory is
well known, for example, see [9, 11, 26, 27, 32, 33]. Also, the concept of measure of
noncompactness has been successfully used to study the problem of existence of solu-
tions for various integral, differential, and difference equations. Some of the related
work can be observed in [13-16, 25, 28, 30]. The measure of noncompactness associ-
ates numbers to sets in such a way that compact sets all get the measure 0, and other
sets get measures that are bigger according to “how far” they are removed from com-
pactness. Darbo, in [12], first implemented the measure of noncompactness to general-
ize the Banach fixed point theorem for Banach spaces. The main advantage of using
the measure of noncompactness is that the compactness of the domain of the operator
has been relaxed to obtain the fixed point of an operator. In this paper, we will apply
the Sadovskii and Monch fixed point theorems with the measure of noncompactness to
prove the existence of solutions of problems (1) and (2). The class of equations in (1)
and (2) is more general, and it can include several previously studied problems as spe-
cial cases, [2, 9, 21, 33] to mention a few.

The paper is structured as follows. Section 2 comprises some fundamental defini-
tions and results to follow the paper. Section 3 deals with our main results of exist-
ence of solutions. In Sect. 4, we provide some new examples to illustrate our results.
Finally, Sect. 5 contains concluding remarks and some further research directions.
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2 Preliminaries

In this section, we set forth some fundamental definitions and results needed for our subse-
quent discussion. We assume that the reader of this paper is familiar with basic concepts of
time scales calculus, and for a review of the topic, we refer to [6, 7]. A time scale, denoted
by T, is a nonempty closed subset of R. We assume that0 € T.ForT € T with0 < T < o0,
the time scale interval Z is defined by Z=[0,7T]; :=[0,TINT = {teT:0<t<T})

Definition 1 (See [6, Definition 1.58]) A function x : T — X is said to be rd-continu-
ous if it is continuous at every right-dense points in T and its left sided limits exist at left
dense points in T. The notation C4(T,X) denotes the set of all rd-continuous functions
x:T->X.

Definition 2 (See [19, Definition 5]) A function f : T XX — X is said to be rd-continu-
ous on T X X if f(-,x) is rd-continuous on T for each fixed x € X and f(z, -) is continuous
on X for each fixed ¢ € T. The notation C4(T X X, X) denotes the set of all rd-continuous
functions f : T XX = X.

Definition 3 (See [6, Definition 2.25]) A function p : T — R is said to be regressive if
1 + u(®)p(1) # 0 for all r € T*, where the graininess function u : T — [0, c0) is defined
by u(t) :=o(r)—t. The notation R(T,R) denotes the set of all regressive functions
p:T-R

Definition 4 (See [6, Definition 2.30]) For a regressive function p : T — R and £, € i
the exponential function e,(:, ) on the time scale T is defined as the unique solution of the
initial value dynamic problem

XA = p(x, x(ty) =1, t€T*.

For p,q € R(T,R), we define

14 up’

p®q:=p+q+upq, ©p:= pSq:=p®d(©q).

Some fundamental properties of the exponential function are stated below.

Theorem 1 (See [6, Theorem 2.36)) Assume that p,q : T — R are regressive and rd-con-
tinuous. Then the following hold.

(i) ey(r,s) =lande,(t, Hn=1;
(ii) e,(e(0),5) = (1 + uOp®)e,(1, 5); Certified as

(111) 1/6 (f, S) = ee (t’ 5); ¥
(iv) ep(;: 5) = l/epfs, 1, TRUE cory

(V) e,(t,5)e,(s, 1) = e,(t,7);
(Vi) e,(t,5)e,(t,5) = €,g4(1,5);
(vii) €,(t,5)/e, (1, 5) = €41, 3). Pr al
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E = sup |eg (1, 5)|.
s1eT ©r

Let (X, || - lly) be a given Banach space. By C(Z, X), we denote the family of all continuous
functions from 7 into X, which is a Banach space coupled with the norm || - || defined as

lIxll == sup [lx(2)]lx-
rel

Definition 5 (See [35, Definition 11.1]) Let M be a bounded subset of a Banach space
X. The Kuratowski measure of noncompactness of M, y(M), is defined to be the infimum

of all £ > 0 with the property that M can be covered by finitely many sets, each of whose
diameter is less than or equal to &. That s,

xM) = inf{e > 0 : M admits a finite covering by sets of diameter < ¢}.

We list some properties of the measure of noncompactness.

Theorem 2 (See [35, Propositon 11.3]) Assume that A and B are bounded subsets of a
Banach space X and y is the measure of noncompactness. Then we have the following.

(i) IfA C B, then y(A) < x(B);

(1)  x(A) = y(A), where A denotes the closure of A;

(i) x(A) = 0ifand only ifA is relatively compact,

(iv) (AU B) = max{ y(A), 7(B)};

(V) x(@A) = |a| y(A) (@ € R);

(Vi) x(A+B) < y(A) + x(B);
(vii) x(convA) = y(A), where conv (A) denotes the convex extension of A;
(viii) x(A) < diam(A).

The next lemma from [1] is stated in the context of time scales.

Lemma 1 (See [21, Lemma 2.7]) Let H C C(Z, X) be a family of strongly equicontinuous
Junctions. Let H(t) := {(h(t) € X : h e H}fort € T. Then

Xc(H) = sup y(H()),
1eT

and the function t — y(H(t)) is continuous, where X c (H) denotes the measure of noncom-
pactness in C (Z, X).

Theorem 3 (Mean value theorem [9, Theorem 29D If f : T — X is rd-continuous, then
/ f(DAt € p,(J) - convf(J),
% 4

where J is an arbitrary subinterval of T and p4(J) is the Lebesgue delta-measure of J.
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Dynamic Local and Nonlocal Initial Value Problems in Banach...

Definition 6 (See [35, Definition 11.6]) Let X be a Banach space. A mapping F : X = X
is said to be condensing if and only if F is bounded and continuous, and y(F(B)) < x(B)
for all bounded sets B in X with y(B) > 0, where y is the measure of noncompactness.

In the existence result for local initial value problem (1), we apply the fixed point theo-
rem due to Sadovskil, which is stated as follows.

Theorem 4 (See [35, Theorem 11.A]) Let M be a nonempty, closed, bounded, and convex
subset of a Banach space X. Then the condensing map F : M — M has a fixed point in M.

The following fixed point theorem due to Monch will be used for the existence result of
nonlocal initial value problem (2).

Theorem 5 (See [23, Theorem 2.1]) Let D be a closed and convex subset of a Banach
space X. Let F : D — D be a continuous mapping with the property that there exists x € D
such that for any countable set C of D satisfying that C = conv (F(C) U {x}), we have that
C is a relatively compact D. Then F has a fixed point in D.

3 Main results

The following lemma is proved in [8, Lemma 3.1], which establishes the equivalence of
dynamic problem (1) and a delta integral cquation.

Lemma2 Let A € X, p € R(Z,X). Assume that f € Cy(Z X X,X). Then, x is a solution of
the dynamic problem (1) if and only if x satisfies the integral equation

1
x(1) = e, (1, A + / eyt )f (5, x(s))4s. 3)
0
We can state a similar lemma for dynamic problem (2) as follows.
lemma 3 Let @ : C(Z,X)—» X be continuous and p € R(Z,X). Assume that

f € Cy(Z X X, X). Then, x is a solution of the dynamic problem (2) if and only if x satisfies
the integral equation

x() = eep(t,O)(D(x) + / eop (1, ) (s, x(s))A4s. 4)
0

In the following theorem, we obtain the existence of solutions of local initial value prob-
lem (1) applying Theorem 4. '

Theorem 6 Consider the dynamic problem (1). Let f :IxX — X be rd-continuous.
Assume that the following hypotheses are satisfied.

Certify
(H,) There exists a positive constant N such that TRuE ?g ;l‘s’
Ramni T P%

atjan Jyn:
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W@ wllx <N+ [lully) (5)
forallt € T and eachu € X.
(Hp)  There exists an rd-continuous function L : T X R* — R* such that for each con-
tinuous function u : RY — R*, L(-,u(-)) is continuous on T and Jo Lis,v)4s <v
foreachv > 0.

(Hs)  For any compact subinterval J of T and each nonempty bounded subset W of X,
and for allt € Z, we have

#(eoplt, IFTX W) < sup Lis, 2(W)).
SE
Then the local initial value problem (1) has at least one solution on T provided ENT < 1.

Proof Letr > 0 be such that

E|lA|ly + ENT
T—ENE '~ ©)
and consider the closed ball
B, :={x€ C(ZX): |lx|| <r}.

The set B, is a bounded, closed, and convex subset of C (Z, X). We see that the set B, is an
equicontinuous subset of C (Z, X). To this end, let 7', ¢’ € T with¢ < ¢”. Then, from (3), we
have

(") — x(@)lIx

r'!
egp(t’, 0)A + /[; eop(t”, )f (5,x(5))A4s — e, (', 0)A

’

- / eg,(t', )f (5, X(s))As
0 X

= Ieep(f”, 0) " eep(tf! 0)' "A”X

"

t v
- / eap (1", 5)f (5, x(s5)) As — / eyt 5)f (5, x(5))As
0 0

X

= legp(".0) — ey @, O)IAlly + [ley”", ) / e, (5, 0)/(s, x(s)) s
0

" ¢
+eg,(t",0) / €,(5, 0)f (s, x(5))4s — e, (7', 0) /0. e,(s, 0)f (s, x(5))4s
¢

X
.‘.!’
+ ,0) — ey, (7,0 / ,0 ,X(5)) || A
legy(t”,0) — g, (7', 0)] ] e, (s, O Lf (s, x(s) [| x As Cefﬁﬁed%?g
7 cO
+legy "0 | ley s, OG5 xs)ly s TRUE
f,
Y__ ] ,‘L\n.'i{" ala Collgga'
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A similar inequality is obtained for ¢/ <. Since eg,(:, 0) is continuous, the right-hand
side of the above inequality tends to zero as ' —#' — 0. Thus, B, is equicontinuous. Now,
we define a mapping F : B, = C(Z,X) by

F)(1) 1= egp(t, 0A + / egp(ts $)f (s, x(s))A4s. @)
0

Let x € B,. Then, for t € Z, we can write

IFG)®llx =

eep(r,O)A+ /0‘ eep(t,s)f(s,x(s))ds

X

= Ieep(t’ 0)“|A "X 5 / leep(.ts S)“V(S’X(S))”XAS
0
<E|Alx+E /0 ILfCs, X))l As

 §
<E|Ally+E / N(1 + |Ixllx)4s
0

<E|A|lx +EN(1 +nT
(6)
<r.
Thus, F(B,) is bounded. Also, equicontinuity of F(B,) can be verified similarly to that of
B,. Hence F(B,) C B, and F : B, > B, is a well-defined mapping. Next, we show that
F : B, - B, is continuous. Let {x, } be a sequence of elements in B, such that x, — x in B,.
Then, for t € Z, we compute

t
|F(x,)(1) — F)®ly =|leg,(t, 0)A + / egp(t, )f (s, x,(5))4s
0

—eg,(1,0)A — ./n eop(t, S) (s, x(s))As”x

=" / egp(t, $)f (s, x,(s)A4s — / eep(r, 5)f (s, x(s))As
0 0

X

< /0 leap(ts (s, %,(5)) = (5, x()| .

By the continuity of f, we have ||F(x,)(t) — F(x)(n)|lx = 0 as n — oo. This shows that the
mapping F : B, — B, is continuous. Now, let D be a nonempty strongly equicontinu-
ous subset of B,. Then, by Lemma 1, we see that the map 7 - x(D(1)) is continuous on
7. Since B, is bounded, D is also bounded. Let = be a real number such that 0 <7 < 7.
By hypothesis (Hp), (#,5) = L(t, x(D(s))) is continuous for (t,s) e I x R*. Therefore,
for given £ > 0, there exists § > 0 such that for £, 1" € [0,7]y with | —¢'| < 6, we have
|L(Z, 7(D(s))) = L', x(D(5)))| < €. Define [; 1= [1;_y, t;]y and

W, = J D@

sel;

fori=1,2,...,n, where n € Nand Certified ag
TRUE copy
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0 if£=0,
sup{sE[O':]T O<s-r1_, <8} ifi=1,2,...,n-1.

If7; = 1,_, for some i,1 < i < n, then we set tiyy =inf{s € T : s> 1;}. Now, by Theorem 3,
we see that

/0‘ eop(T, $)f (s, x(s))As € Z Ha(l;) conv (e, (7, 5)f (s, x(s)) : s € L)
i=1

C D HaYConV (e, (v, IDF(I, X W,)) for x € D.

i=l

Hence, for 7 € Z,
X(F[D)(2)) = { ee, (T, 0)A + /0 ' €op(T8)f (5, x(s))4s : x € D}

< x(eg, (7, 0)A) + z{ /0 r €p(T, ) (5, x(s))4s : x € D}
= ,y{ /U- ' egp(T, S)f(5,x(s))4s : x € D}
=Y ( /n‘ ; €ep(T, ) (s, D(S))AS)
< X(il Ha;) conv (eg,(z, [f(U; % W;)))
< Z; [uaU)| x(Conv (eg, (7, 1) U; X W)))).

By hypothesis (H;), we can write

2(F[D](z)) < ; HaT) 22}) L(s, x(W)).

Let u € I; be such that L(u, x(W))) = sup L(s, y(W,)), where
SEL;

W, =) ).

uel;

d as

Then, we obtain %gg%ﬁgg‘?’f x
%‘rﬁla Colleg®s
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2 FIDY@) < Y, pally) Lz, X(W)
i=l
i=1

n 1
=% / (L, (W) = L(s, x(W) + L(s, x(W)ds
=1 'rx——l

f L, x(Wy)As
L

<y / s, 7(W)) + |LGs, x (W) = LG, x(W)DAs
i=1 Y iq

n

i
£y / L(s, x(W))As + Te.

i=1 Yl
Since € > 0 is arbitrary, we obtain
n f
Z(FIDI@) < ), f L(s, x(W,)4s
i=1 Y11

= / L(s, x(W)))4s

0

T
5/ L(s,supx(D(u)))As.
0 uel;

Therefore,

T
sup y(F[D](7)) £ / L(s, sup z(D(u))) 4s.
0

Tel uel;

But, from hypothesis (H,), we have

T
/ L(s, sup X(D(u))) As < sup y(D(u)).
0

uel; uel;
This yields
sup y(F[D)(z)) < sup y(D(u)).
el uel;

By Lemma 1, we can write
Xc(F[DD < xcD)

for any nonempty bounded subset D of B, with x¢ (D) > 0. Thus, F is a condensing map
according to Definition 6, and by Theorem 4, we can conclude that F has at least one fixed
point in B,. This completes the proof. O

Remark 1 Theorem 6 coincides with the results given in [21] with 7" = oo and p(1) = 0.

As an immediate result of Theorem 6, we can obtain the following corollary.
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Corollary 1 Let f : Tx X — X be rd-continuous such that there exist two bounded func-
tionsy,y, . T — R, with ' :

I, Wl < vy (@) + wa()]lully

forallt € T andu € X. Suppose that the hypotheses (H,) and (Hs) hold. Then, the dynamic
problem (1) has at least one solution if EM,T < 1 for some M, € R*.

Proof Since y,, y, are bounded on Z, there exist M;, M, € R* such that y(f) < M, and
yw,(t) <M, forallt € Z. Then

IF(, wllx < w0 + wr(]luly

Ml
<M, E“'"""X .

2
E|Ally + EM\T

1 —-EM,T
required result. |

We choose r > 0 such that < r. Now, applying Theorem 6, we get the

In the next theorem, we obtain the existence of solutions of nonlocal initial value prob-
lem (2) applying Theorem 5.

Theorem 7 Consider the dynamic problem (2). Let f : ZIXX — X be rd-continuous.
Assume that the following hypotheses are satisfied.

(Hy)  There exists a positive constant N such that
F(r wllx < NC1+ Jlullx) ®)
forallt € T and eachu € X.

(Hs) There exists a positive constant Q such that
1PGOllx < Q1 + llullx) ©)
foreachu € X.
(Hg) For each bounded subset Y of X, there exists « € (0, 1/T) such that
2(egp(T, DT, Y)) < ax(Y)
for each subinterval J of T, and for each bounded subset W of X, we have
X(@(W)) < Qx(W).

IfEQ+Ta < 1and EN < a, then the dynamic nonlocal initial value problem (2) has at
least one solution on T.
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Proof Let r > 0 be such that

EQ + ENT ;
1—(EQ +ENT) ~

(10)
and consider the closed ball
B,:={xe CZX): |kl < r}.

The set B, is a closed, convex, and equicontinuous subset of C (Z, X). This can be seen from
the proof of Theorem 6. Define the mapping F : B, — C(Z,X) by

FG)@) 1= eg,(t, 0)P() + / et S)f (5, x(5)) . (11)
0

Then, by Lemma 3, the fixed points of the map F* are the solutions of (2). For x € B, and
t € Z, from (11), we obtain

IOl = o0y 00t + | eqy(t.6.x604s
0

X

1
< legy (OBl + / e, (1, (5, X(s))As
0

X

< EQ(1 + [Ixlly) + E f NQ + [Ixll)ds
0

<EQ(1+r)+EN(+nr)
<EQ(1+r)+ENQ+nT
(10)

<r.

This implies that F(x) € B, for all x € B,. Hence, F(B,) C B,. Therefore, F maps B, into
itself. Now, let {x, } be a sequence in B, such that ||x, — x|| = 0. Then, for eacht € Z,

IFG)(®) — FOWlx = [lea, 0P(,) + / ey (1, ) (5.3,(5))As
0

— ey (1, D) — /O eyt ) (5,(5))4s

X
Certified as < leg, (1 0)|l|@(x,) — ()l x

COPY :
THoS + /; legp(®: (s, x,(5)) = f s, X()llx As

< E||@(x,) — 2()lx
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Since f€CyZxX,X) and @D is continuous on C(Z,X), we can deduce that

|Fx,) = F&)|| — 0. Thus, F is continuous on B,. Hence, F : B, — B, is a continuous

map. Now, let R be a countable subset of B, such that R = E}W({x} U F(R}) for some

x € B,. The set R is a countable subset of the bounded and equicontinuous set B,. So, it is

+E / I (s, x,(5)) = (s, x(5) || x As.
0
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bounded and equicontinuous. Therefore, the function ¢ — v(f) = y(R(f)) is continuous on
Z,where R(t) :={v(r) € X : veR}forte I.Let

FR)() = {eep(r, 0)@(x) + / eop(t,8)f(5,x(s))As : xER, t€ I}.
0
Then,
FR)(1) = eg,(1, 0)D(R(1)) + / eop(t, )f (s, R(s))As.
0

By properties of measure of noncompactness y and hypotheses, for each t € Z, we have

v(t) < y(FR(M) U {x})
< x(F(R(@)))

< z(eep(r, 0)BR®)) + /U ep(t, S, R(s))As)

1
< x(egp(t, 0)PR()) + ( / egp(ts ) (s, R(S))ds)
0

< legy(t, Ol 2 (BR®)))

+ 1 (#al10, 117 YEORY (e, ([0, t1y, [0, A1 )F([0, Fly, RO, 111))))
< EQ(R®) + 1 (To (e, ([0, fly, [0, 71)F ([0, 17, R((0, 711))))
< EQz(R®) + 17 ( conv (e, (10, fly, [0, 71 )0, i1y, R((0, 1))
< EQz(R®) + T x (e, (0, Iy, [0, 11 )0, 15, R((0, £1;)))

< EQx(R®) + Tay(R()
= (EQ + Ta) x(R(1)).
That is,
X(R(@)) < (EQ + Ta) x(R()).
This gives

(1-(EQ +Ta))x(R(1) < 0.

But, by assumption, 1 — (EQ + Ta) > 0. Hence y(R()) = 0. Therefore, R(z) is relatively
compact in B,. Now, applying Theorem 5, we conclude that the mapping F has a fixed
point in B,. Hence, the dynamic initial value problem (2) has a solution in Z. O

Remark 2 Theorem 7 also holds even if the condition ‘# € X’ in the hypotheses (H,) and
(Hs) are replaced by the local condition ‘u € B;’, where

B; i={xe X : |x|lly <p)} for some p > 0.

Remark 3 Since u(f) < T for all Z, we may replace (5) and (8) by the growth condition

@ wlly < N(1+u@ + llully) Certified as(12)
and (9) by the growth condition TRUE COPY
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le@lly < QU + u®) + llullx)- (13)
Then, in the proof of Theorem 6, we obtain
IFG)Wx < EllAlly + ENA +T +nT,

E||Ally + ENT + ENT?
1 — ENT

and we choose r > 0 such that < r. In the proof of Theorem 7, we

obtain

IF@®)|lx < EQA+T+r)+ EN(1+T+nT,

1
and we choose r > 0 such that (E;Q_iggjjé N%T) < r. Results similar to Theorem 6 and
7 can be obtained without much change.

4 Examples

Now, in this section, we provide some new examples to illustrate our results. For simplic-
ity, we assume X = R.

Example1 LetT :=[0,1]U [2,3] and consider the dynamic initial value problem

x4+ pox© =f(t,x), te€I” :=[0,3]3;
x(0)=A, Y

where f(t,x) = —12— sint 4+ xe~!, p(f) = —1, and A € R. We see that

lf@t,x)| < —é—sinr + |xe”| < %(1 + |x])

and hence, the hypothesis (H;) holds. Take L(s,e") = %e’. Then hypothesis (H,) is also

satisfied because

3
/ L(s,e)As < €.
0

Take J = [2,3]y, and W = [0, 1]. Then, we observe that sup,c 7 L(s, (W) = % Now, since
forr € J and x € W, f(z,x) < 2, we obtain
o1yt T (7, %) < 2eg-1y(t, 7)

for teZ, 7€J, and x€W. But x(ee(_l)(l', J) =0. Therefore, we get
Z(eec—u(f: Df(Tx W) = 0. Hence the hypothesis (H;) also holds. Thus, the conclusion of
Theorem 6 implies that the problem (14) has at least one solution on [0, 3]+.

Example 2 Let T be any time scale with u(f) > 0 and consider the dynamic initial value

problem
Certified as {x” U =), FE T (15)
TRUE COPY (0) = D),
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where f(t,x) = sin (—) + 2x, P(x) = _33:__ and p(f) = —L— We see that
2+ cost 1+ u(n u(
. 1 )
< _— 2x| < 2(1 + |x
lf@, x| < Sm(2+cosr |+I | <2(1+ |x])

and hence, the hypothesis (H,) holds. Also,

3x

S| = | —=—

20 = |1

Thus, hypothesis (Hs) holds. Take W =[1,2] and Y =[0,1]. Then we find
2(@(W)) < 3P(W). Also, fort € J andx € Y, f(t,x) < 3. Next, fors,f € J and x € Y,

| < 3(1 + |x]).

Cop (s, D (1,3) < 3eg,(5,1) < 3¢* forg > %ﬁ.

But y(e%9) = 0. So x(eg,(J, Nf(T.Y)) < a,a € (0,1/T). This yields that the hypothesis
(Hg) holds for these f and @. Consequently, Theorem 7 implies that the problem (15) has at
least one solution on T.

5 Conclusion

The results presented in this paper are essentially new in the context of time scales. Within
this scope, they form a basis for the study of other dynamic problems such as dynamic
inclusions and higher-order dynamic equations. By employing the simple useful formula
X% = x + pux%, the interested reader can acquire various qualitative properties of dynamic
equations with local as well as nonlocal conditions. Also, as a continuation of this work,
employing the approach of measure of noncompactness, the other aspects of solutions, like
monotonicity, periodicity, stability, attractivity, asymptotic behaviour, oscillations, and
controllability for these dynamic problems can be studied in the near future. The present
results can also be generalized by replacing the compactness conditions in the hypotheses
(H;) and (Hs) with general conditions. Of course, one can replace the Kuratowski measure
of noncompactness y with some other axiomatic measures of noncompactness.
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