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1 Introduction

For a time scale T, we study the dynamic initial value problem

{xﬂ(t) +9%()z°(t) = o(t,z(t), teI*, (1.1)

ZB(S) = Iy,

where 7 := [S,T|NT, S, T €T, S < T,z9 € R, ¢ € Cra(T x R,R), and 9 € R(T,R).

Motivated by Tisdell and Zaidi (2008); Bohner and Peterson (2001), in this paper,
we shall find results related to existence of solutions of (1.1). Also, motivated by Tisdell
and Zaidi (2008) and dos Santos (2015¢), we shall focus on continuous dependence and
convergence of solutions. The main tools that we use are fixed point theory and a dynamic
version of Gronwall’s inequality. Concerning an overview of time scales theory, we refer to
Bohner and Peterson (2001) and Bohner and Peterson (2003). For related work, we refer to
Anderson (2008), Abbas (2018), dos Santos and Silva (2013), Tikare and dos Santos (2020),
dos Santos (2015a, 2015b), Tisdell and Zaidi (2008), Karpuz (2018) and Dai and Tisdell
(2006). In Section 2, we give some preliminary results and definitions, while Section 3
contains an auxiliary result, an integral equation which is equivalent to (1.1). Section 4
contains our main results, three distinct existence theorems, a theorem on the continuous
dependence of solutions, and a theorem on convergence of solutions.

2 Preliminaries

Here, some necessary definitions and results are recalled from the literature. We first collect
the relevant material from time scales theory, then the pertinent material from fixed point
theory.
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First-order nonlinear dynamic initial value problems 243

2.1 Time scales

Definition 2.1 (See (Bohner and Peterson, 2001, Definition 1.58)): ¢ € C,a(T,R) pro-
vided ¢ is continuous at all right-dense points and its left-sided limits exist at all
left-dense points.

Definition 2.2 (See (Karpuz, 2018, Definition 5)): We say ¢ € C.4(T x R,RR) provided
o(-, ) € Cra(T,R) forall z € R and p(t,-) € C(R,R) forall t € T.

Definition 2.3 (See (Bohner and Peterson, 2001, Definition 2.25)): We say ¢ € R(T,R)
provided ¢ € C,q(T,R) and 1 + u(t)y(t) # 0 forall t € T*.

Definition 2.4 (See (Bohner and Peterson, 2001, Definition 2.30)): For given ¢ € R and
to € T, the exponential function ey (-, tp) is defined to be the unique solution of

2 =)z, (ko) =1.
Theorem 2.5 (See (Bohner and Peterson, 2001, Corollary 6.8)): Let ¢ € Cra(Z,R) and
A1, A2, Az € R with Az > 0. Then

i
P(t) S A+ A(t—5) + ,\3/ p(s)As forall tel
s

implies

A2

o) < (A + ﬁ exs(t,8) — — forall tel.
A3 A3

2.2 Fixed point results

Theorem 2.6 (See Banach’s fixed point theorem (Granas and Dugundji, 2003, Theorem 1.1
in §1.1)): If Z is a Banach space and ¥ : £ — = is contractive, then ¥ has a unique fixed
point z* € E.

Theorem 2.7 (See (Granas and Dugundji, 2003, Corollary 1.2 in §1.1)): IfZ is a Banach
space, ¥ : {z € E : d(x, o) < v} — E is contractive with constant o« < 1, and

d(¥(zo), o) < (1 — a)r,
then ¥ has a fixed point.
Definition 2.8 (Compact mapping (Pata, 2019, Definition 11.1)): A mapping between
normed linear spaces is called compact provided bounded sets are mapped into relatively

compact sets.

Definition 2.9 (Relatively compact set): A set M is called relatively compact provided its
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244 M. Bohner et al. -

Theorem 2.10 (Schaefer’s fixed point theorem (Pata, 2019, Theorem 1L.D)): If 2 is a
Banach space, ¥ : £ — E is a continuous and compact mapping, and

0

P={zeZ: 2=¢¥(z) forsome &e€|0,1]}
is bounded, then U has a fixed point in =.

There are two forms of Arzela-Ascoli’s theorem, and they are stated as follows, see (Zhu
and Wang, 2007, Lemma 4) and (Agarwal et al., 2003, Lemma 2.6).

Theorem 2.11: A subset of C(Z,R) which is both equicontinuous and bounded is
relatively compact.

Theorem 2.12: A sequence of functions which is both uniformly bounded and
equicontinuous in I contains a uniformly convergent subsequence.

3 Auxiliary result

The equivalence of (1.1) and a delta integral equation is given in the following lemma. The
idea is the same as in (Bohner and Peterson, 2001, Theorem 2.74).

Lemma3.1: Let S €T, zo € R, ) € R(Z,R), and ¢ € Cra(Z x R,R). Then, = solves
(1.1) if

t

508 = BisolliBiE s fs asltasins, wls) e a1

Proof. First, assume x : Z — IR satisfies (1.1). Then,

ey(t, S)p(t. z(t)) = ey (t, S)z2 () + ey (t. S)w(t)z? (t)
= (ey (-, 8)z)2 ().

Now integrating from S to ¢ € Z and using the initial condition in (1.1), we obtain

t
f ey(5,8)0(s, 2(5))As = ey (£, S)z(t) — e4(S, S)z(S)
s
= ey(t, S)x(t) — zo.
Multiplying now by egy(t,.5) and using the time scales exponential rules, we get
t
2(0) = eou(t S)z0 = cou(t,5) [ eu(s, S)ols,a(s)s
s

= /5' eoy(t, S)ey (s, S)p(s, z(s))As

vt
= ./s eow(t, Seay(S, s)p(s, z(s))As

i
= /S eoy(t, s)p(s, z(s))As. Certified as
TRUE COPY
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First-order nonlinear dynamic initial value problems 245

Hence, z satisfies equation (3.1).
Conversely, suppose that z satisfies equation (3.1). Then z(S) = zo. Multiplying
equation (3.1) by ey(t, S), we find

t
eu(t, )a(t) = 2(8) + [ eu(s, )pls(5)s
s
Taking the A-derivatives on both sides of this equation, we get
e(t, S)z™ (t) + P(t)ey(t, S)z? (t) = ey(t, S)p(t z(t))-
Hence, z satisfies (1.1). O
For the main theorems presented below, we employ the notation

2= C(Z,R),
d(z,y) := sup |z(t) —y(t)| for z,y€E,
tel

|z|| ;== d(z,0) for =z €E,

and we introduce ¥ : = — Z by
i
U(z)(t) := egy(t, S)xo + f eoy(t,s)p(s,z(s))As for t€Z, z€E.
s

Finally, we denote

E := sup |egy(t,s)| > 0.
t,s€L

4 Main results

In the following theorem, using Banach’s fixed point theorem, Theorem 2.6, we establish
existence of exactly one solution of (1.1).

Theorem 4.1: Let ¢ € Cq(Z x R, R). If there exists L > 0 with
lo(t,u) — p(t,v)| < Llu—v| forall uveR,te, 4.1)
then (1.1) has exactly one solution.

Proof: From Lemma 3.1, fixed points of ¥ are solutions of (1.1). Therefore, we shall prove
that the map ¥ has a unique fixed point z € E. For this, we show that ¥ is contractive. We

have
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246 M. Bohner et al.
[¥(2)(t) — ¥ (y)(t)] < /; leow(t: 8)l e (s, 2(s)) — @ (s, y(s))| As
< [ BLi() - yis)1 8
= L [ In(s) - o)1
< EL '/t d(z,y)As
- BL(zy)(t - 5),
that is,

|¥(z)(t) — ¥(y)(t)| < ELha(t, S)d(=,y), 4.2)
where hy(t,.5) =t — S. We claim that for n € N,

[T (2)(t) — ¥ () (t)] < E"L ha(t, S)d(z,v), 4.3)
where h;, are defined recursively by hn1(t,S) = f; hn(s,S)As, see (Bohner and
Peterson, 2001, (1.9)). We shall prove this by induction on n. Clearly, from (4.2), (4.3)
holds for n = 1. Assume that (4.3) holds forn = k € N, i.e.,

|9* @) (1) ~ T*()(0)] < B*L*ha(t, S)d(z, ).

Now consider
[T+ (2) (2) — TF (y)(@)| = |2(TF () (t) — T(T () ()]

< [3 leou(t, ) |i(s, T (2)(5)) — (s, P (y)(s))| As
<E f [o(s, T*(2)(s)) — (s, T (1) (5))| As
S
< EL ] | (2)(s) — T (y)(s)| As
S
< EL / E*ILFhi(s, S)d(z, y)As
= EFFILE+1(z 4) ./t hi(s,S)As
S
= E* 1 LM (2, )Ry (8, S).

Hence, (4.3) holds for n = & + 1. Thus, (4.3) holds for all n € N. From (Bohner and Lutz,
2006, Theorem 4.1),

ha(t, S) <

E;—'s)— forall neN, teZ.
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First-order nonlinear dynamic initial value problems 247

Using this in (4.3), we get
d(¥™(z), ¥ (y)) < and(z,y),

where

_ (BL@T-9)"

o < 1 for sufficiently large n € N.

0Ly ¢

Thus, by (Granas and Dugundji, 2003, Result (A.1)), ¥ is contractive. Consequently, by
Theorem 2.6, ¥ has exactly one fixed point. O

Remark 4.2: Under the conditions of Theorem 4.1, if z;, 7 € N, are defined recursively
by

zi1 () = eou(t, S)z0 + [S cou(t: $)o(s, 2:(5)) As,

then z; — =* uniformly on Z, where z* is the only solution of (1.1).

In the following theorem, using the local version of Banach’s fixed point theorem,
Theorem 2.7, we find that a solution of (1.1) exists.

Theorem 4.3: Letzy € R, p € Cq(Z x R, R), and

T
M= ]S lo(t, 0)| At.

If there exists

1
Le o 5r=s)
with
lo(t,u) —p(t,v)| < Llu—v| forall t€l
and all u,v € R satisfying |u — zg| < r and |v — zo| < 7, where

_ (B+1)|mol + BM +1

1-EL(T-S) :
then (1.1) has at least one solution.
Certified as
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248 M. Bohner et al.

where o € = is the constant function defined by zo(t) = zo for all ¢ € T. Let T,y € B.
Then

1%(2)(6) — W(y)(0)] = ] | eoutt,s)ots,2() - pls, y(s)) s
4
< /3 leww(t,9)] (s, 2(5)) — w(s, y(s))| As
T
<E [S (5, 2(5)) = (s, y(s))| As
T
<E [b Lo(s) - y(s)] As

< ELd(z,y) /T As
s
= EBL(T - S)d(z,y) = ad(=,y),
so that
d(¥(z), ¥(y)) < ad(z,y) with «:= EL(T - S) €[0,1).

Hence, ¥ : B — = is contractive with constant «. Next,

19(20)(¢) — zo(t)] = :

eou(t, S)zo + / Sl F)bliesms) e g
S

t
(eew(t,S) == 1).’5‘{} +/3 eew(t, S):p(s,a:g)As

< leow(t, §) — 1 Jao| + | [, coultsShots, z0)as
< (leoy(t, $)] + 1) |zo] + /6 leou(t, S) lp(s, zo)] As

< (E+1)|zof +Eft lo(s,zo)| As
< (E+1) |z -hE‘j'I/J;'S
<(E+1)|wo| +BEM +1=(1-a)r
so that
d(¥(z0), o) < (1 — a)r.

Consequently, by Theorem 2.7, ¥ has a fixed point, and this fixed point is a solution of
(1.1). a

In the following theorem, using Schaefer’s fixed point theorem, Theorem 2. 10, we establish
existence of at least one solution of (1.1).

Theorem 4.4: Let ¢ € Cq(Z x R, R). If there exists N > 0 with
lo(t,w)| S N(1+ |u|) forall weR,tel, 4.4)

then (1.1) has at least one solution. Certified as
TRUE COPY
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First-order nonlinear dynamic initial value problems 249

Proof: Inafirst step, we demonstrate that ¥ : £ — Zis continuous. Let {z, : n € N} C E
be such that z,, — & € E as n — oo. Then, fort € Z, we find

19 () (8) — U (z)(t)] = ‘ fs eou(t, 8)(0(5,2a(s)) — 0(s, 2(5)))As
< /S leow(t, )] [6(5, Za(s)) — 0(s, 2(5))] As
T
<E /S [0(5, 2a(5)) — (s, 2(5))] As,

so that
T
d(¥ (), U(z)) < E fs lelosmabali= s, 2(a))) A

Due to the imposed condition on , we have ¥(z,,) — ¥(z)asn — oo.Hence, ¥ : Z = E
is indeed continuous. In a second step, we show that ¥ : = — = maps bounded sets into
relatively compact sets. Let 2 C = be bounded. Then there exists K > 0 with ||z < K
for all x € €. Now, let x € 2. Then, for t € Z, we obtain

i

eoy(t, o+ [ eou(ts)p(s, a(@)As

|9(z)(8)] =

< legy(t, S)||zol + /‘; leay (2, 5)| lo(s, z(s))| As
<Blaof + [ lpls.2(:)] s
<E |zo| + E/St N(1+ |z(s)|)As
<E |z +E./:N(1 + lzl)As
<E|xo| + EN(1+ K)(T - S5),
so that
1¥(z)|| < E |zo| + EN(1 + K)(T - S).
Therefore, ¥ () is bounded. Moreover, for ¢, € Z with ¢; < ¢, we get
[¥(2)(t2) — ¥()(t1)] < |eoy(ta, S)xo — eoy(ts, S)xo

oty oy
+] / eou(tz, s)p(s, 2(s))As — j eou(t1, s)p(s, z(s))As
s S

< |(eey(te, S) — eay(t1,S)) o] + /t : ey (ta, 8)p(s, z(s))As

; ified as
+ A (eow(t2; s) — egy(t1, s)) o(s,z(s))As 'FI:;I% e
incipal
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250 M. Bohner et al. =

= |(eoy(t2, S) — ey (t1,S)) xo| + /: ; ecy(t2, s)p(s, z(s))As

t1
+ lesy(t2, S) — egy(t1, )| ‘/s ey(s, S)p(s,z(s))As

< leoy(ta, S) — ecu(tr, S)| lzo] + / Jeou (2, )| [o(s 2(s))] As
+leaylta, S) — cop(tr. S)| [S Je(s )| (s, 2(s))| As
< legy(t2, 8) — egy(t1, S)| |zo| + /t ’ EN(1+ K)As

T
+ leow(t2, ) — eoy(ts, S)| / EN(1+K)As
S

= leay(t2,5) — eou(t1, S)| (|zo| + EN(1+ K)(T - S))
+EN(1+ K)(tz — t1).

Ift; > to, then a similar calculation leads to the same result. Altogether, for any ¢1,t € Z,
we have

jz(t2) — 2(t1)] < leey(tz; S) — eoy(t1, S)| (|wo| + EN(1 + K)(T — S))
+EN(1+ K)(ts — t).

As 13 —t; — 0, the right-hand side of this inequality tends to zero. Thus, ¥(Q) is
equicontinuous. Now, since ¥(€2) is bounded and equicontinuous, using Theorem 2.11,
U(82) is relatively compact. Hence, ¥ : = — = indeed maps bounded sets into relatively
compact sets. By Definition 2.8, ¥ : £ — = is compact. In a third step, we show that

'={z€Z: x=¢¥(z) forsome ¢€[0,1]}
is bounded. Let z € I'. Then, there is £ € [0, 1] with z = £¥(z). For ¢ € Z, we get
lz()] =€ |9 (2)(?)]
=¢£

t

coulta)mo+ [ eou(t,s)ols, 2(s)As

<leay(t, Sl lzol + [ leou(t, o) lp(s, 2] As

<Elaol + B [ lo(s,2(5)1 5

<El|zo| + E /S N1+ Jo(s)])As

=E|zg| + EN(t - 8) + EN[; |z(s)| As
Employing Theorem 2.5 (note that EN > 0), forall ¢ € Z, we get

l2(®)] < (Bloo| + Lern(t,5) — 1 < (Blzol + Denn(T,8) = 1, certified as
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First-order nonlinear dynamic initial value problems 251

where we used again EN > 0 in the last inequality. Hence,
Izl < (Elzol + 1)een(T,S) — 1,
so that I is indeed bounded. Consequently, by Theorem 2.10, ¥ has a fixed point. O

Remark 4.5: Under the conditions of Theorem 4.4, with the same calculations as in the
proof of Theorem 4.4, we see that any solution z € E (because z = ¥(z) according to
Lemma 3.1) is bounded by

llz|l € (E|zo| + 1)een(T,S) — 1 4.5)
and satisfies, if ||z|| < K,

[2(t2) — ()] < leou(t2, S) — eoy(tn, $)| (2ol + EN(1 + K)(T - )
-l-EN(l-I-K)(tg —tl) forall t¢y,tx €. (4.6)

Now, let us discuss some results concerning continuity and convergence of solutions of

(1.1).

Theorem 4.6: Let ¢ € Cq(Z x R,R). Assume x and y are solutions of (1.1) with
z(S) = zo and y(S) = yo. If there exists L > 0 such that (4.1) holds, then

d(z,y) < Elzo — yol eer (T, S).
Proof: Define z := |z — y|. Then, using Lemma 3.1, for ¢t € Z, we find
2(t) =lz(t) — y(®)| = [¥(z)(t) — ¥(y)(®)|
<leowltsS)(ao ~ o)l + | [ eoultss)(ols,2(5) — ols,u(s)As
<E|zo — yo| + E/; le(s,z(s)) — (s, y(s))| As
<z~ w0l + BL | [a(s) ~3(6)| 8
=F |zg — yo| + EL /; z(s)As.
Employing Theorem 2.5 (note that EL > 0), forall ¢t € Z, we get
2(t) < E|zo — yol epL(¢,S) < E|zo — yo| e (T, S),
where we used again £L > 0 in the last inequality. Hence,
2]l £ E|zo — yoleer (T, S),

which completes the proof. O

A convergence result of solutions of (1.1) is given in the final thgogemified as
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Theorem 4.7:  Let gy, € Ciq(Z x R, R), k € N. Suppose there exists N > 0 so that all ¢y,
satisfy (4.4). Assume x, k € N, solves '

z2(t) + P(t)z° (t) = @r(t, z(t)), te I¥, et
w(s)zw((]k), 4.7)

where mék) —xo € Rask — oo. Let ¢ € Cq(Z x R, R). If there exists M > 0 satisfying

lo(t,u) — p(t,v)| < M|u—v| forall wvweR,teZ, keN,
then there exists a subsequence {xy, } that converges uniformly to a solution of (1.1).
Proof: For each k € N, ¢y, satisfies the assumptions of Theorem 4.4. Thus, by (4.5)

lzk] < (E ’a:{gk)! + 1) egn(T,S) — 1.

Since {xg")} is a real and convergent sequence, it is bounded, say by .J, so that
lzxll < (EJ + 1)epn(T,S) —1=: K forall keN.
Hence, {z } is uniformly bounded. Next, by (4.6), for all t1,t2 € Z, we have

|zx(t2) — -$k(t1)| < leay(tz,S) — eay(tr, S)| (|mék)’ +EN(1+ K)(T - S))

+ EN(1+ I{)(tz - tl)
< leey(t2, S) — egy(t1, §)| (J + EN(1 + K)(T - S))
+EN(1+ K)(ta — t1).

Letting t2 — ¢; — 0 in the right-hand side of this inequality, we find that the limit is zero,
independent of k& € N. Therefore, {z}} is equicontinuous. Using Theorem 2.12, {z } has
a uniformly convergent subsequence, denoted once again by {z1}. By Lemma 3.1,

t
zk(t) = egy(t, $)z” + / eoy(t, s)pr(s, z(s))As (4.8)
S
holds for each ¢t € 7 and k € N. Letting now k — oo in (4.8), we get

Sl e s B4 /S ecsulionipke B ihs, 49)

provided we can show that

¢ ¢
lim / eew(t,s):pk(s,xk(s))é.s:/ eoy(t, s)o(s, z(s))As. (4.10)
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To show equation (4.10), we calculate

| eovttsshons,mm(s)as — [ coults hots,a(s))as
S s
< [ leow(t, o) lon(s,21(5)) - o(s,2(s)] A

S
<E fg 0k (5, 21(5)) — (s, 2(s))] As
SE/SM[a:k(s)—w(s)[As

T

<E / Mlwg 2
S

— EM(T - S)d(zx.z),

confirming equation (4.10). Thus, equation (4.9) holds. Employing Lemma 3.1 one last
time completes the proof. O
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