M.Sc. Semester II Botany Syllabus

Hindi Vidya PracharSamiti's

RamniranjanJhunjhunwala College

of Arts, Science & Commerce

(Autonomous College)

Refer to page no: 03

highlighting component

Affiliated to

of Research Project

UNIVERSITY OF MUMBAI

Syllabus for the M.Sc.

Program: M.Sc. BOTANY

Program Code: RJSPGBOT

(CBCS 2020-2021)

SEMESTER II

		TOPIC HEADINGS		L	/
Course Code	UNIT		Credits	Week	
RJSPGBOT201	Title of paper:				
	Plant Diversity: Cryptogams II (Bryophyta and Pteridophyta)				
		Bryophyta I	4	1	
		Bryophyta II		1	
		Pteridophyta I		1	
	IV	Pteridophyta II		1	

RJSPGBOT202	Title o	Title of paper:		
	Plant	Diversity: Spermatophyta II (Anatomy, De	velopm	ental
	Botany	Botany and Plant Physiology)		
	I	Anatomy I	4	1
	II	Anatomy II		1
	111	Developmental Biology and Palynology		1
	IV	Regulation of Photosynthesis in Eukaryotes		1
		and Photosynthesis in Prokaryotes		

RJSPGBOT203	Title o	Title of paper:		
	Enviro	invironmental Botany and Statistical tools		
	I	Environmental Botany I	4	1
	П	Environmental Botany II		1
	Ш	Quantitative studies in Environmental science		1
	IV	Statistical tools and data analysis		1

M.Sc. Semester II Botany Syllabus

RJSPGBOT204	Title c	Title of paper:		
	Medio	Medicinal Botany, Cytogenetics and Research Methodology		
	I	Medicinal Botany	4	1
	П	Molecular Evolution and Population Genetics		1
		Transposable Elements in Prokaryotes and Extra		1
	Ш	nuclear genetics		
	IV	Research methodology		1

RJSPGBOTP201	Plant Diversity: Cryptogams II (Bryophyta and Pteridophyta)	2
	Plant Diversity: Spermatophyta II (Anatomy, Developmental	2
RJSPGBOTP202	Botany and Plant Physiology)	
RJSPGBOTP203	Environmental botany and Statistical tools	2
RJSPGBOTP204	Medicinal Botany, Cytogenetics and Research Methodology	2

M.Sc. Semester II Botany Syllabus

Theory Semester II Detail Syllabus

Course Code	Title	Credits	
RJSPGBOT201	Plant Diversity –Cryptogams II (Bryophyta and	4	
	Pteridophyta)		
<u>Unit I:</u> Bryophyta	a l	1	
Classifica	tion of Bryophyta, upto orders, according to the system		
proposed	d by G.M. Smith.		
Life cycle	of Plagiochasma and Notothylas		
Alternatio	on of generation in Bryophyta		
Unit II: Bryophyt		1	
Origin ar	nd evolution of Bryophyta with reference to habitat and		
form	form		
Evolution of the Sporophyte in Bryophyta			
Unit III: Pteridophyta I			
• Classification of Pteridophyta, upto orders, according to the system			
proposed	proposed by G.M. Smith		
Study of	Study of life cycle of <i>Marselia</i>		
Evolution of Sori in Pteridophytes			
Unit IV: Pteridophyta II		1	
• The geo	• The geological time scale and a study of fossil Pteridophytes		
(Rhynia,	(Rhynia, Horneophyton, Lepidodendron, Calamites, Cladoxylon,		
Sphenophyllales, Coenopteridales)			
Economic importance of Pteridophytes			
Cultivation and maintenance of ornamental Ferns.			

Hindi VidyaPracharSamiti's, RamniranjanJhunjhunwala College of Arts, Science & Commerce M.Sc. Semester II Botany Syllabus

M.Sc	Semester II Theory
RJSPGBOT201	Course Outcomes 2.1:
Paper 1	1. Detailed study of classification of G.M. Smith for
Plant Diversity -	Bryophyta and Pteridophyta.
Cryptogams II	2. Study of Bryophytes and Pteridophytes in aspect of
(Bryophyta and	evolution ecology, economic importance, ecological
Pteridophyta)	indicators and evolution of sporophyte and
	gametophyte.
	3. Economic importance of Pteridophytes and cultivation
	and maintenance of ornamental ferns.
	Learning outcomes:
	Understanding past environment and role of Bryophyta
	and Pteridophytes with reference to adaptation to land
	habitat.
	\succ Recognising the benefits of Bryophytes and
	Pteridophytes for getting motivated for
	entrepreneurship nursery practices for growing
	ornamental ferns.

Hindi VidyaPracharSamiti's, RamniranjanJhunjhunwala College of Arts, Science & Commerce

M.Sc. Semester II Botany Syllabus

Course Code	Title	Credits	
RJSPGBOT202	Plant Diversity- Spermatophyta II (Anatomy, Developmental	4	
	Botany and Plant Physiology)		
Unit I: <u>Anatomy</u>	<u> </u>	1	
Merister	ns: Definition type of meristems, apical cell theory,		
histoger	ntheory and Tunica corpus theory		
Sensory	and tactile tissue system: Tactile sense organs,		
gravitati	onaland optical sense organs		
Unit II: Anatom	<u>y II</u>	<u>1</u>	
Morpho	genesis and organogenesis in plants: Organization of shoot		
and roo	ot apical meristems; shoot and root development, leaf		
develop	ment and phyllotaxy; ABC model of flower development,		
floral ev	ocation and factors responsible for floral evocation, overall		
pathway of flowering.			
Unit III: Developmental Botany			
 Special relationships of pollen grain in pollen tetrads 			
Pollen wall morphogenesis, ultra structure, primexine formation.			
Pollen p	roteins and allergens		
Somatic	embryogenesis and its applications, Pollen embryogenesis		
and dev	elopment of androgenic haploids, Uses and Limitation of		
haploids.			
	Fertilization: Pollination, pollen-pistil interaction, role of synergids,		
double fertilization and post fertilization changes.			
Endosperm: Types, endosperm cell fate and differentiation.			
Unit IV: Regulation of C ₃ , C ₄ and CAM Photosynthesis			
Role of Light			
 Regulation of RUBISCO, PEPcase, NADP-MDH and PPDK 			
 CAM regulation through transport of metabolites 			
Pentose phosphate pathway and its importance			
Photosy	nthesis in Prokaryotes – Light and Dark reactions		

M.Sc	Semester II Theory
RJSPGBOT202	Course Outcomes 2.2 :
Paper 2	1. Detailed study of anatomical meristem, tissues, sensory
Plant Diversity-	and tactile tissue system, Morphogenesis and
Spermatophyta	organogenesis in plants.
II (Anatomy,	2. Somatic embryogenesis, pollination, pollen-pistil interaction
Developmental	and fertilization, Mechanism of Pollination and Fertilization,
Botany and	endosperm and its types.
Palynology)	3. Detailed study of palynology.
	4. Study of photosynthetic pathways and its regulation in
	plants
	Learning outcomes:
	Understanding the mechanism of various type of tissues
	Detailed study of angiosperms plant development
	\succ Application of palynology in various industries, allergies
	identifies pollen and correlate with seasonal allergies.
	\succ Learning the adaptive values of plants by regulating
	photosynthesis

•

Course Code	Title	Credits
RJSPGBOT203	Environmental Botany and Statistical tools	4
Unit I: Environmental	Botany I	1
The Environme	ent: Physical environment; biotic environment; biotic	
and abiotic int	teractions.	
 Habitat and N 	liche: concept of habitat and niche; niche width and	
overlap; funda	amental and realized niche; resource partitioning;	
character disp	lacement.	
 Population Ec 	cology: Characteristics of a population; population	
growth curves	s; population regulation; life history strategies (r and	
K selection); c	concept of meta population – demes and dispersal,	
interdemic ext	inctions, age structured population.	
Unit II: Environmenta	l Botany II	1
 Species interactions: types of interactions, interspecific 		
competition, herbivory, carnivory, pollination and symbiosis.		
 Biogeography: Major terrestrial biomes, theory of island 		
biogeography; biogeographical zones of India.		
Environmental Botany- Present concern: Conservation of genetic		
resources, gene pools land races, Global warming and costal		
ecosystems. Depletion of forest cover, threats to mangroves.		
	and plant cover.	
	studies in Environmental Botany	1
	udying Plant Community – Quadrats, Transects and	
Bisects		
Density, Frequency, Cover, Biomass, Species dominance		
Vegetation mapping using GPS and Remote sensing		
Unit IV: Statistical Tools		
• Statistical tools and data analysis: Central tendency, variance,		
testing of hypothesis, coefficient of correlation, ANOVA and		
regression, Ra	ndomised block design and Latin square.	

Hindi VidyaPracharSamiti's, RamniranjanJhunjhunwala College of Arts, Science & Commerce M.Sc. Semester II Botany Syllabus

M.Sc	Semester II Theory
RJSPGBOT203	Course Outcomes 203
Paper-III	1. Ecological study of environment, habitat and niche and
Plant Physiology	population ecology.
and Environmental	2. Detailed study of species interactions, biogeography
Botany	and environmental botany.
	3. Statistical tools for application in various studies
	Learning outcomes:
	Learning ecological concept of plant, biogeography and
	environmental botany.
	Design of experiments which are statistically sound and
	data interpretation.

Hindi VidyaPracharSamiti's, RamniranjanJhunjhunwala College of Arts, Science & Commerce

M.Sc. Semester II Botany Syllabus

Course Code	Title	Credits
RJSPGBOT204	Medicinal Botany, Cytogenetics and Research Methodology	4
Unit I: Medicinal Botany		
Biological s	source, geographical distribution, physicochemical analysis of	
Tylophora d	asthmatica (leaf), Fennel and Plantago(fruit/seed),Cinnamomum	
and Holarri	hena (bark) and Acorus (rhizome) and Tinospora root.	
Essential oi	ls (Cinnamomum, Eucalyptus and Citronella)	
• Fatty oil (Se	esam, Safflower and Coconut)	
Vegetable	fat (Kokum butter and Mahua butter)	
Preparation	n of a Monograph : <i>Murraya koneigi</i>	
Unit II: Molecular	Evolution and Population Genetics	1
Concepts	of molecular evolution, molecular divergence and molecular	
clocks; mol	ecular tools in phylogeny, classification and identification; protein	
and nucle	otide sequencing; origin of new genes and proteins; gene	
duplication	and divergence	
Population	Genetics-Population, gene pool, gene frequency, Hardy-	
Weinberg	Law, concepts and rate of change in gene frequency through	
natural sele	ection, migration and random genetic drift, isolating mechanisms;	
Allopatricit	y and sympatricity, Convergent evolution and co evolution.	
Unit III: Transposa	ble Elements in Prokaryotes and Extra nuclear Genetics	1
Insertion s	equences, Transposons, IS elements and Transposons in Plasmids,	
Bacterioph	nage <i>Mu</i> .	
Transposa	ble Elements in Eukaryotes: Transposons in plants, Ty elements in	
yeasts, Dro	osophila Transposons	
Mitochonce	drial Genome, Chloroplast Genome, RNA Editing, Origin of	
Mitochono	dria and Chloroplasts.	
Extra nucle	ear inheritance: Leaf variegation in Mirabilis jalapa, poky mutant in	
Neurospor	a, Yeast petite mutants, extra nuclear genetics in <i>Chlamydomonas</i> .	

Hindi VidyaPracharSamiti's, RamniranjanJhunjhunwala College of Arts, Science & Commerce M.Sc. Semester II Botany Syllabus

 Unit IV: Research Methodology and Computational Biology
 Concept of research, why and what and how. Types and approach, data collection, different resources, library, field and others. Experimental design, method and standardization, reproducibility of results. Ethics in research, plagiarism check.
 Bioinformatic tools: BLAST, FASTA, RASMOL, Phylogenetic trees.

M.Sc	Semester II theory		
RJSPGBOT204	Course outcomes2.4:		
Paper-IV	Detailed study of medicinal botany as Biological source,		
Medicinal	geographical distribution and physicochemical analysis		
Botany,	> Detailed study of Essential Oils, Fatty oils and Vegetable		
Cytogenetics	Fats.		
and Population	Molecular evolution, gene pool, gene frequencies, mobile		
genetics	genetic elements, role in plant breeding.		
	Maternal inheritanceand dynamics of population genetics.		
	Detailed study and analysis of bioinformatics tools.		
	Submission of a review paper written by the student		
	Learning outcomes:		
	Concept and application of Pharmacognosy and economic		
	importance of plants		
	\succ Understand the genetic basis of speciation, variations,		
	genetic drift, mobile genetic elements, chloroplastic and		
	mitochondrial genomes and their role in evolution.		
	\succ Methods and analysis skills required for the study of		
	population genetics.		
	Knowing the application of bioinformatics tools		

Course Code	Practical Title (Skill enhancement, research orientation) Credits			
RJSPGBOTP201	Plant Diversity - Cryptogams II (Bryophytaand 2			
	Pteridophyta)			
1. Study	of vegetative and reproductive structures in			
Targionia, Plagiochasma Fimbraria, Pellia and Poganatum.				
2. Study of vegetative and reproductive structures in : Isoetes,				
Ophioglos	ssumPteris,Angiopteris, LygodiumandAzolla			
3. Study o [.]	f fossils:Sigillaria, Calamites, Rhynia, Sphenophyllum,			
Zygopteris,Botryopterisand Glossopteris.				

M.Sc	Semester IIPractical			
RJSPGBOTP201	Course Outcomes: Skill development, experiential learning, plant			
Practical I	diversity			
Plant Diversity	1. Slide preparation/ permanent slides study of vegetative and			
- Cryptogams II	reproductive structures in			
(Bryophytaand	Targionia,Plagiochasma,Fimbraria,PelliaandPogonatum.			
Pteridophyta)	2. Slide preparation/ permanent slides study of vegetative and			
	reproductive structures in: <i>Isoetes,</i>			
	Ophioglossum, Pteris, Angiopteris, Lygodium and Azolla.			
	3. Detailed study of fossils: Sigillaria, Calamites, Rhynia,			
	Sphenophyllum, Zygopteris, Botryopterisand Glossopteris.			
	Learning outcomes :			
	\succ Understanding the detailed study of vegetative and			
	reproductive structures of plant diversity			
	Recognising the evolution of plants through fossils study			

Practical Ti	ctical Title Practical Title(Skill enhancement)				
RJSPGBOTI	BOTP202 Plant Diversity- Spermatophyta II (Anatomy,				
	Developmental Botany and Palynology)				
1. Stuc	dy of wood elements in Annona, Michelia, Sterculia and Thuja, u	sing the			
mac	eration technique.				
2. Stud	dy of the following leaves with respect to leaf surface characte	ers			
(wax	k, cuticle, epidermis, stomata, epidermal outgrowth): Pistia,Fic	US,			
Avicennia and Peperomia.					
3. Pho	tosynthetic system in <i>Pinus</i> (arm palisade): <i>Cyperus, Ficus,</i> and O	kalis.			
4. In v	itro germination of pollen grains, effect of temperature on polle	en viability			
and	shortterm storage.				
5. Stuc	dy of the morphology of the pollen (using Chitale's and a	acetolysis			
met	method) from the families; Malvaceae, Asteraceae, Convolvulaceae, Labiatae				
and	Graminae.				

M.Sc	Semester II Practical (Skill Enhancement)			
RJSPGBOTP202	Course Outcomes:			
Practical II	1. Study of wood elements using the maceration			
Plant Diversity-	technique.			
Spermatophyta II	2. Detailed anatomical sectional study of leaves with			
(Anatomy,	respect to leaf surface characters (wax, cuticle, epidermis,			
Developmental stomata, and epidermal outgrowth).				
Botany and	3. Study of photosynthetic systems in leaves			
Palynology)	Learning outcome:			
	Detailed study of some wood elements can be helpful to			
	check purity of plant materials product			
	Knowing the adaptations of plant with the study of leaf			
	outgrowths			
	Study of plant development stages			

Hindi VidyaPracharSamiti's, RamniranjanJhunjhunwala College of Arts, Science & Commerce M.Sc. Semester II Botany Syllabus

Course Code	Practical Title (Skill enhancement)	Credits		
RJSPGBOTP203	2			
Practical exercises are pla	nned for better understanding of the state of e	environment,		
rather than 5-hour units. F	rather than 5-hour units. Field exercises are expected to be completed during excursion			
and field diaries maintaine	ed for submission during tests. Other practical	work can be		
carried out in the laborato	ry with help of plant and soil samples collected fr	om the field.		
1. Quantitative study of	of diurnal fluctuation in titratable acid number (1	AN) on CAM		
plants.				
2. Study of instrumen	ts used to measure microclimatic variables; soil	thermometer,		
anemometer, whi	ling psychrometer, rain gauge, Lux met	er. Visit to		
meteorological stati	meteorological station and report writing			
3. Field visit to study costal ecosystem/mangrove vegetation and make a key to				
identify mangroves bases on morphological characters.				
4. Quantitative analys	is of herbaceous vegetation for frequency and	l comparison		
with Raunkiaer's fre	quency distribution law.			
5. Assessment of %	frequency, density and abundance of a com	munity using		
quadrat.				
6. Prepare a list of p	lants occurring in a grassland and prepare cha	art along line		
transect				

7. Submission of project reports of every field study.

Hindi VidyaPracharSamiti's, RamniranjanJhunjhunwala College of Arts, Science & Commerce

M.Sc. Semester II Botany Syllabus

M.Sc	Semester II Practical		
RJSPGBOTP203	Course Outcomes:		
Practical III	1. Study of instruments used to measure ecological parameters		
Plant Physiology	2. Quantitative analysis of herbaceous vegetation using		
and Environmental	Raunkiaer's frequency		
Botany	Learning outcomes:		
	\succ Learning the working of ecological impact assessment		
	develop entrepreneurship.		

Course Code	Practical Title (Skill enhancement)	Credits		
RJSPGBOTP204	Medicinal Botany, Cytogenetics and Population	2		
	genetics			
1. A study of the macroscopic and microscopic characters and identification of active				
ingredients of drugs mentioned in the syllabus for theory by means of chemical				
tests/TLC.				
2. Preparation of monograph for any one medicinal plant.				
3. Estimation of oil from oil seeds: Solvent extraction using Soxhlet				
4. Estimation of free fatty acids				

- 5. Estimation of saponification value of the oil sample
- 6. Interpretation of genetic phenomenon in Maize, Mirabilis jalapa
- 7. Calculation of genotypic frequencies.
- 8. Calculation of allelic frequencies from the frequencies of genotypes.

M.Sc	Seme	Semester IIPractical (Skill enhancement)		
RJSPGBOT20P4				
Practical IV	Cour	Course outcome 2.4:		
Medicinal Bot	any, 1.	Detailed study of medicinal botany with the macroscopic		
Cytogenetics	and	and microscopic characters and identification of active		
Population genetic	cs	ingredients of drugs.		
	2.	Economic importance and application of fatty oils.		
	3.	Mobile genetic elements, population genetics and		
		evolutionary aspects		
	4.	Detailed study and analysis of bioinformatics tools.		
	Learr	ing outcome:		
	×	Concept and application of medicinal botany		
		Understanding the genuinely of plant materials for drugs		
		Commercial value and applications of fatty oil		
		Interpretations of genetic phenomenon		
		Knowing the application of bioinformatics		

References

- 1. Pandey , B. P . A Textbook of Botany- Angiosperms
- 2. Sutaria . A Textbook of Systematic Botany
- 3. Alexopoulos, C.J., Mims, C.W., Blackwell, M. (1996). Introductory Mycology, John Wiley and Sons (Asia), Singapore. 4th edition.
- Maheshwari, P. An introduction to Embryology of Angiosperms by, McGraw Hill Book Co.
- 5. An introduction to Genetic analysis Griffith Freeman and Company (2000)
- Ausubel, F., Brent, R., Kingston, R. E., Moore, D.D., Seidman, J.G., Smith, J.A., Struhl, K. (1995). Short Protocols in Molecular Biology. John Wiley & Sons. 3rd edition.
- Bajracharya D. (1999). Experiments in Plant Physiology-A Laboratory Manual. Narosa Publishing House, New Delhi.
- 8. Berg JM, Tymoczko JL and Stryer L (2011) biochemistry, W.H. Freeman and company.
- Bhatnagar, S.P. & Moitra, A. (1996). Gymnosperms. New Age International (P) Ltd Publishers, New Delhi, India.
- 10. Bhojwani, S.S. and Bhatnagar, S.P. (2011). The Embryology of Angiosperms. Vikas Publication House Pvt. Ltd., New Delhi. 5th edition.
- 11. Bhojwani, S.S. and Razdan, M.K., (1996). Plant Tissue Culture: Theory and Practice. Elsevier Science Amsterdam. The Netherlands.
- 12. Sunder Rajan, Bioinformatics, Himalaya Publications.
- 13. Vasistha , B. R. Book for Degree Students- Algae/Fungi/Bryophyta.
- 14. Vasistha, P. C. Book for Degree Students- Pteridophyta/Gymnospersm
- 15. Campbell A. M., Heyer L. J. (2006) Discovering Genomics, Proteomics and Bioinformatics. II Edition. Benjamin Cummings.
- 16. Campbell NA, Reece JB, Urry LA, Cain ML, Wasserman SA, Minorsky PV, Jackson RB (2008). Biology, Pearson Benjamin cummings, USA. Education Inc.

8th edition; 4-5.

- 17. Campbell, M.K. (2012) biochemistry, 7th edition, published by Cengage learning.
- Campbell, P.N. and Smith A.D. (2011) Biochemistry illustrated. 4th edition, published by Churchill Livingstone.
- 19. Chrispeels, M.J. and Sadava, D.E. (2003). Plants, Genes and Agriculture. Jones & Bartlett Publishers.
- 20. Gangulee, Das and Dutta, College Botany Volume I and II latest edition. Central Education enterprises
- 21. Cooper GM and Hausman, RE (2009). The cell: a molecular approach. 5th edition. ASM Press and Sunderland, Washington DC, Sinauer associates, MA.
- 22. Smith, G. M. Cryptogamic Botany Volume I and II McGraw Hill.
- 23. Dawson, C. (2002). Practical research methods. UBS Publishers, New Delhi.
- 24. Dickison, W.C. (2000). Integrative Plant Anatomy. Harcourt Academic Press, USA.
- 25. Vijayan, K. and Tsou, C. H., DNA barcoding plants: taxonomy in a new perspective 2010. Current Science, 1530 1541.
- 26. Bhojwani and Bhatnagar, Embryology of Plants
- 27. Verma&Agrawal, Environmental Biology
- 28. Esau, K. (1977). Anatomy of Seed Plants. John Wiley & Sons, Inc., Delhi.
- 29. Rastogi, Fundamentals of Biostatics. Ane Books Pvt Ltd (2009)
- 30. Gardner, E.J., Simmons, M.J., Snustad, D.P. (1991). Principles of Genetics, John Wiley & sons, India. 8th edition.
- 31. Russel. Genetics Wesley Longman Inc publishers. (5th edition)
- 32. Winchester, Genetics
- Ghosh, Z. and Bibekanand, M. (2008) Bioinformatics: Principles and Applications. Oxford University Press.
- 34. Glick, B.R., Pasternak, J.J. (2003). Molecular Biotechnology- Principles and

Hindi VidyaPracharSamiti's, RamniranjanJhunjhunwala College of Arts, Science & Commerce M.Sc. Semester II Botany Syllabus

Applications of recombinant DNA. ASM Press, Washington.

- 35. Griffiths, A.J.F., Wessler, S.R., Carroll, S.B., Doebley, J. (2010). Introduction to Genetic Analysis. W. H. Freeman and Co., U.S.A. 10th edition.
- 36. Harborne, J.B. (1973). Phytochemical Methods. John Wiley & Sons. New York.
- 37. Hardin, J., Becker, G., Skliensmith, L.J. (2012). Becker's World of the Cell, Pearson Education Inc. USA 8th edition.
- 38. Hopkins, W.G. and Huner, A. (2008). Introduction to Plant Physiology. John Wiley and Sons. U. S.A. 4th edition.
- 39. Casida, Industrial Microbiology New Age International, New Delhi
- 40. Industrial Microbiology Mac Millan Publications, New Delhi
- 41. Westhead, (2002). Instant Notes on Bioinformatics, Taylor Francis Publications
- 42. Banerjee, P.K., Introduction to Bioinformatics, Chand Publication
- 43. Noggle and Fritz, Introduction to Plant Physiology, Prentice Hall Publisher (2002)
- 44. Jeffrey, C. (1982). An Introduction to *Plant Taxonomy*. Cambridge University Press, Cambridge.
- 45. Johri, B.M. I (1984). Embryology of Angiosperms, Springer-Verlag, Netherlands.
- 46. Judd, W.S., Campbell, C.S., Kellogg, E.A., Stevens, P.F. (2002). Plant Systematics-A Phylogenetic Approach. Sinauer Associates Inc., U.S.A. 2nd edition.
- 47. Karp, G. (2010). Cell Biology, John Wiley and Sons, USA 6th edition.
- 48. Klug, W.S., Cummings, M.R., Spencer, C.A. (2009). Concepts of Genetics. Benjamin Cummings. U.S.A. 9th edition.
- 49. Klug, W.S., Cummings, M.R., Spencer, C.A. (2012). Concepts of Genetics. Benjamin Cummings, U.S.A. 10th edition.
- 50. Kumar, H.D. (1999). Introductory Phycology. Affiliated East-West. Press Pvt. Ltd. Delhi.2nd edition.
- 51. Mauseth, J.D. (1988). Plant Anatomy. The Benjammin/Cummings Publisher, USA.

Hindi VidyaPracharSamiti's, RamniranjanJhunjhunwala College of Arts, Science & Commerce M.Sc. Semester II Botany Syllabus

- 52. Nelson, D.L., Lehninger, A.L., Cox, M.M. (2008). Lehninger Principles of Biochemistry.5th edition, W.H. Freeman and Company.
- 53. Parihar, N.S. (1991). An introduction to Embryophyta. Vol. I. Bryophyta. Central Book Depot, Allahabad.
- 54. Pevsner, J. (2009). Bioinformatics and Functional Genomics, II Edition. Wiley-Blackwell.
- 55. Kokate, Purohit and Gokhale .Pharmacognosy, Nirali Publications
- 56. Haberlandt, Physiological Plant Anatomy, Mac Millan and Company
- 57. Ramavat, K. Plant Biotechnology
- 58. Mukherji&Ghosh, Plant Physiology
- 59. Taiz and Zeiger, Plant Physiology, Sinauer Associates inc. Publishers
- 60. Salisbury and Ross, Plant Physiology, CBS Publishers
- 61. Singh Gurucharan. Plant Systematics, Oxford and IBH Publ.
- 62. Dodds, Plant Tissue Culture.
- 63. Plummer, D.T. (1996). An Introduction to Practical Biochemistry. Tata McGraw-Hill Publishing Co. Ltd. New Delhi. 3rd edition.
- 64. Erdtman, G., Pollen Morphology and Plant Taxonomy Hafner Publ. Co., N.Y.
- 65. Verma and Joshi, Post-Harvest Technology, Indus Publication.
- 66. Plummer, David. Practical Biochemistry, McGraw Hill Publ.
- 67. Radford, A.E. (1986). Fundamentals of *Plant Systematics*. Harper and Row, New York.
- 68. Raghavan, V. (2000). Developmental Biology of Flowering plants, Springer, Netherlands.
- 69. Raven, P.H., Johnson, G.B., Losos, J.B., Singer, S.R., (2005). Biology. Tata McGraw Hill, Delhi, India.
- 70. Russell, P. J. (2010). iGenetics- A Molecular Approach. Benjamin Cummings, U.S.A. 3rd edition.
- 71. Ruzin, S.E. (1999). Plant Microtechnique and Microscopy, Oxford University

Press, New York. U.S.A.

- 72. Sethi, I.K. and Walia, S.K. (2011). Text book of Fungi & Their Allies, MacMillan Publishers Pvt. Ltd., Delhi.
- 73. Shivanna, K.R. (2003). Pollen Biology and Biotechnology. Oxford and IBH Publishing Co. Pvt. Ltd. Delhi.
- 74. Singh, G. (2012). *Plant Systematics*: Theory and Practice. Oxford & IBH Pvt. Ltd., New Delhi. 3rd edition.
- 75. Snustad, D.P. and Simmons, M.J. (2010). Principles of Genetics. John Wiley and Sons Inc., U.S.A. 5th edition.
- 76. Thompson & Thompson, Soil and Soil fertility.
- 77. Stewart, C.N. Jr. (2008). Plant Biotechnology & Genetics: Principles, Techniques and Applications. John Wiley & Sons Inc. U.S.A.
- 78. Taiz, L., Zeiger, E., Miller, I.M. and Murphy, A (2015). Plant Physiology and Development. Sinauer Associates Inc. USA. 6th edition.
- 79. Pandey&Misra. Taxonomy of Angiosperms
- 80. Lawrence George Taxonomy of Vascular Plants, H M, Oxford and IBH Publ.
- 81. Tortora, G.J., Funke, B.R., Case, C.L. (2010). Microbiology: An Introduction, Pearson Benjamin Cummings, U.S.A. 10th edition.
- 82. Tymoczko, J.L., Berg, J.M., and Stryer, L. (2012) Biochemistry: A Short course, 2nd Ed, W.H. Freeman.
- 83. Vander-Poorteri, 2009. Introduction to Bryophytes. COP
- 84. Vashishta, P.C., Sinha, A.K., Kumar, A., (2010). Pteridophyta, S. Chand. Delhi, India.
- 85. Watson J.D., Baker, T.A., Bell, S.P., Gann, A., Levine, M., Losick, R. (2007). Molecular Biology of the Gene, Pearson Benjamin Cummings, CSHL Press, New York, U.S.A. 6th edition.
- 86. Zar, J.H. (2012). Biostatistical Analysis. Pearson Publication, USA. 4th edition.

Scheme of Examinations

- 1. Internal Examination 40 marks various modes with different weightage (Presentation, seminar, assignment, mcq, quiz etc.)
- 2. One External (Semester End Examination) of 60 marks. Duration 2 ¹/₂ hours.
- 3. One Practical at the end of Semester consisting of Practical I 50 marks, Practical II 50 marks, Practical III 50 marks and Practical IV 50 marks separate passing in each practical
- 4. Minimum marks for passing Semester End Theory and Practical Exam is 40 %. Separate passing for Internal and Semester End examination.
- 5. For any KT examinations, there shall be ODD-ODD/EVEN-EVEN pattern followed.
- 6. Two short field excursions for habitat studies are compulsory. Field report submission is mandatory
- 7. Field work of not less than eight hours duration is equivalent to one period per week for a batch of 15students.
- 8. A candidate will be allowed to appear for the practical examinations if he/she submits a certified journal of Botany or a certificate from the Head of the department / Institute to the effect that the candidate has completed the practical course of M Sc. Botany, semester II, as per the minimum requirements.
- 9. In case of loss of journal, a candidate must produce a certificate from the Head of the department /Institute that the practical for the academic year were completed by the student. However, such a candidate will be allowed to appear for the practical examination but the marks allotted for the journal will not be granted.
- 10. HOD's decision, in consultation with the Principal, shall remain final and abiding to all.

M.Sc. Semester II Botany Syllabus

Evaluation and Assessment

Evaluation (Theory): Total marks per course - 100. CIA- 40 marks CIA 1 and CIA 2: Written Test / Assignment / Field Trip/mini project/ & Report -40 marks Semester End Examination – 60 marks Question paper covering all units

Evaluation of Practicals 200 marks (50 marks for each practical)

Question	KNOWLEDGE	UNDERSTANDING	APPLICATION and ANALYSES	TOTAL MARKS- Per unit
Unit 1	06	03	03	12
Unit 2	06	03	03	12
Unit 3	06	03	03	12
Unit 4	06	03	03	12
Short notes from topics covering all the units	06	03	03	12
-TOTAL- Per objective	30	15	15	60
% WEIGHTAGE	50	25	25	100%

Course Semester End Examination in Semester II (RJSPGBOT201, RJSPGBOT202, RJSPGBOT203 & RJSPGBOT204)

Evaluation of Practicals 200 marks/Semester SEMESTER II: (50 marks for each practical RJSPGBOTP201, RJSPGBOTP202, RJSPGBOTP203 & RJSPGBOTP204)

Continuous Evaluation of practical components which require adequate duration for completion of the task, observation and interpretation: 25%

Course end Practical Evaluation of skills of students in terms of skill, analysis, interpretation and conclusion.

Hindi VidyaPracharSamiti's, RamniranjanJhunjhunwala College of Arts, Science & Commerce

M.Sc. Semester II Botany Syllabus

ASSESSMENT OF BOTANY FIELD TRIP REPORT

 Dept. of Botany Course Code
 Date
 Roll No

Name of student:
 UID No

Marks
 /20 Place of visit

Assessment Grid :Place one tick in each appropriate row. Overall mark should reflect the <u>positions of ticks in the individual rows</u>

(20)	Field Trip and Report	80-100% 17-20 Marks	60-80% 13-16 Marks	40-60% 09-12 Marks	20-40 <i>%</i> 05-08 Marks
30% Organization of report		Introduction about the location, vegetation, Botanical Names, Family, Local name, Description using Botanical Term, reporting all the species seen, Handwritten or typed.	Few mistakes,	Many mistakes	Inadequate presentation
(06)	-	6	5	4	_
(10)	Content	Excellent reporting of all the species observed in the field, ecological and morphological data,	Good reporting, species observed in the field but few of them missing in the list	Satisfactory, many species or relevant data missing from the report	3 Poor, inadequate and insufficient data or just a list of the species without any data.
		10/9	8	6	5
10% (02)	Conclusion	Conclusion based on self observation. Type of forest and vegetation	Good conclusion, comments not independent	Satisfactory, but insufficient	Poor,irrelevant conclusion
	Marks	2	2/1	1 /0.5	0.5
5% (01)	References	Proper references, in required format	Proper references but no format	Few references	Irrelevant references
	Marks -	1	1	0.5	0
	Attendance / participation	Attended and participated actively 1	Attended and participated 1	Infrequent Participation 0.5	No participation
	Marks	-			0

Comments:

Name and Signature of Faculty

Hindi VidyaPracharSamiti's, RamniranjanJhunjhunwala College of Arts, Science & Commerce

M.Sc. Semester II Botany Syllabus

Project Post graduate level Dept. of Course Code _____ Date____

UIDNo Roll No Marks /20

Name of student -----

Title of Assignment:

Assessment Grid :Place one tick in each appropriate row. Overall mark should reflect the positions of ticks in the individual rows. In boxes that have more than one set of marks, cancel out the marks that are not applicable and circle the correctmarks.

Project work and report (Parameters)	Marks	80 – 100 % Excellent	60 -80% Good	40 – 60% Satisfactory	20 – 40 % Average
Project work done	10	10/9	8/7	6/5	4 /3
Report writing and conclusions					
	10	10/9	8/7	6/5	4 /3

M.Sc. Semester II Botany Syllabus

Hindi Vidya Prachar Samiti's

Ramniranjan Jhunjhunwala College

of Arts, Science & Commerce

(Autonomous College)

	Refer to page no: 02
Affiliated to	highlighting component
UNIVERSITY OF MUMBAI	of Research Project/Internship

Syllabus for the M.Sc.

Program: M.Sc. BOTANY

Program Code: RJSPGBOT

(CBCS 2020-2021)

M.Sc Botany Semester IV

Course Code RJSPGBOT401	Research based Project	Credit 12	Marks 300
RJSPGBOT402	Internship with Industry	Credit 12	Marks 300

PRE-WORK

- A. Resume making and selection of area of internship
- B. Identification of organization
- C. Rubrics for assessment

STEPS OF RUBRICS

- Step 1: Goals and Policy
- Step 2: Plan for internship
- > Step 3: Identify the appropriate agency/ organization/ industry/ NGO
- Step 4: Monitoring progress of intern
- Step 5: Assessment

PARTICIPANTS

- 1. Student
- 2. Organization/ agency/ industry/ NGO mentor/ co-supervisor
- 3. College mentor

Hindi Vidya Prachar Samiti's, Ramniranjan Jhunjhunwala College of Arts, Science & Commerce M. Sc Botany Syllabus Semester IV

REPORTS

- Fortnight report submission to Organization/ agency/ industry/ NGO mentor/ co-supervisor
- Monthly report submission to College mentor

Credits	24
Hours / credits	Minimum 360 hours
Duration	December to May

ORGANIZATION RESPONSIBILITY

- 1) Monitoring the attendance record of intern
- 2) Discipline
- 3) Fortnight report
- 4) Mentor grade for 200 marks

0	A+	А	B+	В	C+	С
---	----	---	----	---	----	---

5) Mentor marks form 200 marks divided as follows:

Completion of work	100
Presentation and submission of report	100

COLLEGE RESPONSIBILITY

Final evaluation at the institution (400 marks)		
Monthly Report	100	
Dissertation	100	
Presentation	100	
Viva	100	

Hindi Vidya Prachar Samiti's

Ramniranjan Jhunjhunwala College

of Arts, Science & Commerce

(Autonomous College)

Affiliated to

UNIVERSITY OF MUMBAI

Refer to page no: 10 highlighting component of Research Project/Internship

Syllabus for the M.Sc.

Program: M.Sc. BOTANY

Program Code: RJSPGBOT

(CBCS 2020-2021)

Hindi Vidya Prachar Samiti's, Ramniranjan Jhunjhunwala College of Arts, Science & Commerce M. Sc Botany Syllabus Semester III

M.Sc Botany Semester III

Outline of the Course: RJSPGBOT301 and RJSPGBOT302 are common papers for all specialisations

RJSPGBOT301: Techniques and Instrumentation.

RJSPGBOT302: Cell and Molecular Biology.

RJSPGBOT303 and RJSPGBOT304 are Optional Papers in any one of the following specialisations.

- 1. Plant Physiology and Biochemistry (PPB)
- 2. Molecular Biology, Cytogenetics and Biotechnology (MCB)

Theory – RJSPGBOT301	4 Credits
Theory – RJSPGBOT302	4 Credits
Theory – RJSPGBOTPPB303/ RJSPGBOTMCB303	4 Credits
Theory – RJSPGBOTPPB304/ RJSPGBOTMCB304	4 Credits
Practical's (based on all 4 courses) – RJSPGBOTP301, RJSPGBOTP302, RJSPGBOTPPBP303/ RJSPGBOTMCBP303, &RJSPGBOTPPBP304/	
RJSPGBOTMCBP304	8 Credits

Hindi Vidya Prachar Samiti's, Ramniranjan Jhunjhunwala College of Arts, Science & Commerce M. Sc Botany Syllabus Semester III

SEMESTER IV (Common Papers)

Course Code	UNIT	TOPIC HEADINGS	Credits	L / Week
RJSPGBOT301	Title of th	e Paper: TECHNIQUES AND INSTRUM	ENTATION	
	1	Cell signalling	4	1
	II	Nanotechnology		1
	111	Centrifugation and Tracer Technique		1
	IV	IPR		1
RJSPGBOT302 Title of the Paper: Molecular Biology				
	I	DNA replication and Transcription	4	1
	11	RNA processing and Translation		1
	III Gene Regulation I and II		1	1
	IV	Gene Regulation III	1	1

RJSPGBOT P301	Techniques and instrumentation	2
RJSPGBOTP302	Molecular Biology	2

Hindi Vidya Prachar Samiti's, Ramniranjan Jhunjhunwala College of Arts, Science & Commerce

M. Sc Botany Syllabus Semester III

Specialization: Plant Physiology and Biochemistry

RJSPGBOTPPB303	Title of the P	aper: Plant Biochemistry	4
	1	Enzyme and plant proteins	1
		Cytosolic Carbon & Mitochondrial Metabolism	1
		Lipid and nucleotide metabolism	1
	IV	Amino Acid and sulphate Metabolism	1
RJSPGBOTPPB304	Title of the P	aper: Plant Physiology	4
		Stress physiology – abiotic and biotic	1
		Membrane transport	1
		Metabolism of secondary metabolites	1
	IV	Senescence and sensory photobiology	1

RJSPGBOTPPBP303	Plant biochemistry	2
RJSPGBOTPPBP304	Plant physiology	2

M. Sc Botany Syllabus Semester III

Specialization: Molecular Biology, Cytogenetics and Biotechnology (MCB)

	Title of the Paper: Plant Biotechnology			
	I	Plant tissue culture	4	1
	II	Industrial Biotechnology, Down processing and		1
RJSPGBOTMCB303		techniques		
	III	Environmental Biotechnology		1
	IV	Food Biotechnology and Biotransformation		1
RJSPGBOTMCB304 Title of the Paper: Molecular Biology and Cytogenetics				
	I	Cytology and Cancer Biology	4	1
	II	Plant Breeding		1
		Immune system and genetic diseases		1
	IV	Molecular Plant Breeding and Plant Genetic		1
		Engineering		

RJSPGBOTMCBP303	Plant Biotechnology	2
RJSPGBOTMCBP304	Molecular Biology and Cytogenetics	2

Hindi Vidya Prachar Samiti's, Ramniranjan Jhunjhunwala College of Arts, Science & Commerce

M. Sc Botany Syllabus Semester III

SEMESTER III (General Papers)

Course	Course Code Topic			
RJSPG	RJSPGBOT301 TECHNIQUES AND INSTRUMENTATION			
1.	signaling through transduction pa pathways, bacter genomes by nat signaling in plant	cheir receptors, cell surface receptor, intracellular receptor, h G-protein coupled receptors, signal relay pathways-signal athways, second messengers, regulation of signaling rial and plant two-component systems, Modulation of plant cural PGRs- Auxins, GA, Cytokinins, Ethylene & ABA. Light ts, bacterial chemotaxis and quorum sensing. ing (paracrine, synaptic, autocrine, endocrine, cell to cell	1	
Unit I	I: Nanotechnolog	<u></u>	1	
 Synthesis of nanoparticles using biological samples. Characterization of nanoparticles (FTIR, SEM, TEM, STEM, Scanning Tunneling Microscope, Atomic Force Microscope, UV-Visible Spectrophotometer). Application of nanomaterials in food, cosmetics, agriculture, environment management and medicine. 				
4.	Risk of Nanomat	erial to human health and Environment.		
<u>Unit I</u>	II: Centrifugatior	n and Tracer techniques	1	
2. 3. 4. 5. 6.	Preparative centrapplication. Pattern and rate Principle, instruction counter, L	nd Differential & density gradient centrifugation. trifugation & Applications; Analytical centrifugation & of radioactive decay, Units of radioactivity, Stable Isotopes trumentation & technique: Geiger-Muller iquid, scintillation counters & Autoradiography. sotopes in biology: Tracer techniques & Autoradiography.		
	V: IPR		1	
2. 3.	Concept and kind Patents Objective Information Tec	ntellectual property right (IPR) ds. IPR in India and world es, Rights, Patent Act 1970 and its amendments. hnology Related Intellectual Property Rights; Computer ellectual Property		

M.Sc.	Semester IV Theory	
RJSPGBOT301	Course Outcome 3.1:	
Paper I	1. Study of mechanism and types of cell signaling.	
Techniques and	2. Detailed study and application of centrifugationand analysis of	
instrumentation	Differential & density gradient solution.	
	3. Study of tracer techniques with applications of isotopes in biology	
	4. Synthesis of nanoparticles using biological samples	
	5. Detailed study of all type of chromatography techniques and its	
	applications.	
	6. Detailed study of IPR: Outcomes, process & scope.	
	7. Instrumentation techniques	
	Learning outcome:	
	Learning mechanism and types of cell signaling with its application	
	Knowing the working and application of centrifugation	
	Mechanism of all different types of chromatography techniques	
	Understanding the application of nanoparticles	
	Learning the tracer techniques & PCR with applications	
	Understanding the application of IPR	
	Development of application skill	

Course Code	Торіс	Credits
RJSPGBOT302 Molecular Biology		4
<u>UNIT I: DNA F</u>	Replication and Transcription	1
> Molecu	ar details of DNA replication in prokaryotes and eukaryotes.	
> Assemb	ly of raw DNA into nucleosomes.	
DNA ree	combination, Holliday model for recombination.	
 Transcri them. 	ption, RNA synthesis, classes of RNA and the genes that code for	
	ption of protein coding genes, prokaryotes and eukaryotes, mRNA e.	
Transcri	ption of other genes, ribosomal RNA, and ribosomes	
<u>Unit II: RNA P</u>	rocessing and Translation	1
> Capping	, polyadenylation, splicing, introns and exons.	
≻ snRNA,	Types of snRNA, snRNA in spliceosome, significance of snRNA	
Non-co	ding RNAs, ribozyme, riboswitches, RNA localization.	
> Protein	structure, nature of genetic code, translation of genetic message.	
Post tra	nslational modifications, localization, chaperons.	
Unit III: Gene	Regulation I and II	1
•	ions of gene expression in bacteria – TRP operon, ARA operon, e operon.	
🕨 Regulat	ion of gene expression in bacteriophage λ .	
> Control	of gene expression in eukaryotes, Transcriptional control, RNA	
process	ing control, mRNA translocation control, mRNA degradation control,	
protein	degradation control.	
Unit IV: Gene	Regulation III	1
> Genetic	regulation of development in Drosophila.	
> Develop	> Developmental stages in Drosophila – embryonic development, imaginal	
discs, ho	omeotic genes.	

M.Sc.	Semester III Theory
RJSPGBOT302	Course Outcome 3.2:
Paper II	1. Detailed study of Molecular details of DNA replication and recombination in
Molecular	prokaryotes and eukaryotes.
Biology	 Mechanism of gene expression in transcription, RNA synthesis, protein coding genes and RNA processing post transcription in prokaryotes and eukaryotes. Translation and post translational modifications. Detailed study of Regulations of gene expression in bacteria and
	bacteriophage λ.
	5. Genetic regulation of development stages in <i>Drosophila</i> .
	Learning outcome:
	Understanding concept of molecular biology in detail
	Learning the application of tools in molecular biology
	Understanding concept of Regulations of gene expressions
	Understanding concept of molecular biology in detail

RJSPGBOTP301	TECHNIQUES AND INSTRUMENTATION	2	2
> Purificatio	on of chloroplast using density gradient centrifugation		
Isolation	of mitochondria		
Synthesis	of nanoparticles.		
Character	Characterization of nanoparticles by UV spectroscopy.		
Project ba	Project based on IPR		
Separation of plant proteins using PAGE			
IPR assign	IPR assignment		
 Filing a patent. 			
Industrial	visit and report submission.		

RJSPGBOTP302	RJSPGBOTP302 Molecular Biology			
Aseptic t	echniques, safe handling of microorganisms.			
🕨 Establish	ing pure cultures, Streak Plate method (T-streak and pentagon			
method),	Pour plate, Spread plate.			
Isolation	of isolation and quantification of genomic DNA			
Isolation	Isolation of plasmid DNA.			
> Quantific	Quantification of plasmid DNA.			
Agarose	gel electrophoresis separation of plasmid DNA.			
> Restrictio	Restriction enzyme digestion and separation of fragments.			
> Southerr	Southern blot transfer technique.			
Transform	Transformation of E. coli cell by plasmid DNA.			
β-galacto	\triangleright β-galactosidase expression and assay			

M. Sc Botany Syllabus Semester III

Specialization: Plant Physiology and Biochemistry (PPB)

Cours	e Code	Торіс	CREDITS	
RJSPG	RJSPGBOTPPB303 Plant Biochemistry		4	
Unit I	: Enzymes ar	nd Plant Proteins	1	
1.	Purification	and Isolation		
2.	Biochemical	regulation		
3.	Isoenzymes			
4.	Vitamins – s	tructure and Coenzyme activity		
5.		storage proteins in plants, transamination, oxidative and Urea cycle.		
<u>Unit I</u>	I: Cytosolic c	arbon and Mitochondrial metabolism.	1	
1.	Synthesis an and Glucone	nd breakdown of Sucrose and Starch, regulation of Glycolysis eogenesis.		
2.	. Catabolic role of the TCA cycle, Anabolic role of the TCA cycle intermediates			
3.	 Anapleurotic CO₂ fixation, provision of acetyl CoA for biosynthesis, Regulation of TCA. 			
<u>Unit l</u>	II: Lipid and	nucleotide metabolism	1	
1.	Biosynthesis storage lipid	and degradation of odd carbon chain FA, structural and		
2.		d Function of membrane, structural & storage lipids, Omega beta oxidation of odd and even carbon containing fatty acids.		
3.	Purine and F	Pyrimidine biosynthesis and regulation.		
4.	Recycling of	Purine and Pyrimidine nucleotides by salvage pathways.		
<u>Unit I</u>	V: Amino aci	id and sulphate metabolism.	1	
1.	-	of Amino Acids (Proline, Glycine, Asparagine, Tryptophan, ne), Regulation of amino acid biosynthesis		
2.	•	verview, Uptake and transport and Reductive sulphate		

M.Sc. (PPB)	Semester III Theory
RJSPGBOTPPB303	Course Outcome 3.3:
Paper-III Plant Biochemistry	 Study of Mechanism of all types of enzyme, catalyst, regulation and kinetics. Study the role of lectins (plant proteins). Detailed study of pusheatide metabolism and its synthesis.
	 Detailed study of nucleotide metabolism and its synthesis. Study of lipid metabolism synthesis and function of membrane, structural & storage lipids
	 Detailed study biosynthesis and regulation of amino acids Study of the cytosolic carbon and mitochondrial metabolism
	Learning outcome:
	 Understanding the regulation of all types of enzymes. Know the importance of plant lectins. Understanding the biosynthesis and regulation of nucleotide metabolism. Understanding the lipid and aminoacids synthesis and regulation. Learning the importance cytosolic carbon and mitochondrial metabolism.

Hindi Vidya Prachar Samiti's, Ramniranjan Jhunjhunwala College of Arts, Science & Commerce

M. Sc Botany Syllabus Semester III

Course Code		Торіс	Credits
RJSPGBOTPPB304		Plant Physiology	4
1. 2. 3.	Drought - M tolerance, ro stress resista Salinity - G metabolic (exclusion, homeostasis Salinity Stress Freezing stress	Siology – Abiotic stress and Abiotic stress Morphological and cellular adaptations, mechanism of drought ole of Proline, Glycine betaines, Mannitol, Pinitol and Osmotin in ance. eneric Pathway for Plant Response to stress effect of salt on processes, Mechanism of salt resistance- salt avoidance extrusion and dilution) and tolerance (Regulation of ion is by SOS pathway), Role of Glycine betaine and Proline in ss, DEAD-Box Helicases in Salinity Stress Tolerance. ess, Oxygen stress and Flooding ress and Heat stress	1
1. 2. 3.	Pumps – Pro	e transport d Organisation of transport at plant membrane oton pump, H ⁺ ATPase and Ca ⁺² ATPase lon Channels – K ⁺ and Ca ⁺² channels	1
<u>Unit</u> 1. 2.	III: Metabol General bio Biosynthesis flavonoids, a Types of Ph Rhizosphere	ism of secondary metabolites and Phytoremediation synthetic pathways in the formation of secondary metabolites. and role of Phenols, Phenylpropanes, Coumarins, lignins, alkaloids, tannins, and terpenes ytoremediation- Advantages & limitations, Remedial measures- based & Plant based, Hyper accumulators. etic engineering & various enzymes in phytoremediation.	1
 Unit IV: Senescence and sensory photobiology Pigment Metabolism, Protein metabolism and Oxidative metabolism during senescence. Programmed cell death (PCD) an overview. Structure, function and mechanism of phytochromes, Cryptochromes and Phototropins, Phytochrome induced whole plant response, Molecular basis of flower organization: MADS box genes and their expression. Problems based on ABC model for flower organization. 			1

M.Sc. (PPB)	Semester III Theory
RJSPGBOTPPB304	Course outcome 3.4:
Paper-IV Plant Physiology	 Detailed study of concept of water potential, transport and translocation in plants.
	2. Understanding the mechanism of adaptation of plants under stress conditions
	3. Physiology of plants under stress
	 Detailed study of biosynthetic pathways and biosynthesis of secondary metabolites
	 Study of pigment, protein and oxidative metabolism during senescence.
	 Understanding the mechanism of sensory photobiology and molecular basis of flower organization.
	Learning outcome:
	Understanding the role of water, ions, solutes and macromolecules in transport and translocation in plants
	Understanding detailed concept of stress metabolites their importance and applications
	Understanding the role of secondary metabolites and its Commercial application
	Understanding the senescence regulation and Phytochrome for desired designed plants

RJSPGBOTPPBP303	Plant Biochemistry	2
 Separation of p 	broteins by lon exchange chromatography.	
Separation of a	amino acids by two-dimensional chromatography.	
Viscosity studie	es of proteins: standard BSA and varying concentrations of urea	
Estimation of T	ryptophan.	
Estimation of p	olyphenols from suitable plant material	
Extraction & se	Extraction & separation of Glucosinolates from Mustard.	
Extraction & se	eparation of Piperine from <i>Piper</i> .	
Extraction & se	paration of lycopene from <i>Lycopersicum</i> .	
Study of enzym	ne SDH and effect of inhibitor on its activity	
Extraction and	estimation of vitamin C from suitable plant material	
	•	

M.Sc.	Semester IV Practical
RJSPGBOTPPBP303	Course Outcomes
Practical III	1. Estimation of tryptophan and polyphenols.
Plant Biochemistry	2. Study of enzymes SDH and effect of inhibitors on its activity.
	3. Extraction & separation of Glucosinolates from Mustard,
	Piperine from Piper and lycopene from Lycopersicum.
	4. Study of enzyme activity
	Learning outcome:
	\succ Know the importance and use of fats and oil, chlorophylls,
	tryptophan and polyphenols in plants.
	\succ Understanding the biosynthesis and storage of secondary
	metabolite in plant cell and its commercial application

RJSPG	ВОТРРВРЗ04	Plant Physiology	2
\succ	Estimation of	GOT from the given plant material	
\succ	Estimation of	GPT from the given plant material	
\checkmark	•	f acid extract from any halophyte and estimation of sodium and ntent by flame photometer	
\checkmark	Estimation of	oroline content from suitable plant material	
\checkmark	Study of super	roxide dismutase (SOD) from suitable plant material	
\succ	Isolation and e	estimation of DNA	
\checkmark	Estimation of	RNA by orcinol method	
\succ	Measurement	and Characterization of Chlorophylls and Carotenoids by	
	Spectroscopy	at different stages of Senescence.	

M.Sc.	Semester IV Practical
RJSPGBOTPPBP	Course Outcome:
304	1. Study of various enzyme assays and interpretations
Practical IV	2. Isolation and estimation of nucleic acids
Plant	3. Techniques of elemental analysis
Physiology	4. Dynamics of stress induced enzymes
	Learning outcome:
	Application of all knowledge and interpretation
	Understanding the regulation of enzymes

Specialization: Molecular Biology, Cytogenetics and Biotechnology (MCB)

Course Code	Торіс	Credits
RJSPGBOTMCB303 Plant Biotechnology		4
 Micropropagand embryog Factors response Plant improv Plant cell cuproduct for permeabiliza Problems in post for the quest for the permetable 	Culture and Commercial Aspects pation of floricultural and medicinal plants using organogenesis genesis. onsible for <i>in vitro</i> and <i>ex vitro</i> hardening. ement through soma clonal variations. Itures as chemical factories: Cell suspension, enhancement of mation using biotic and abiotic elicitors, immobilization, tion and product recovery. plant tissue culture: Contamination, Phenolics and Recalcitrant. or commercial production from plant cell: scaling up of cell onin production by <i>Lithospemum erythrorhizon</i> cell cultures.	1
 Bioreactors: bioreactors, semi continu Factors for g General type Industrial pro Industrial en: Single Cell Pro Distillation, F 	comparison of bioreactors, operating mode, batch, fed batch, ous, two stage operation, continuous cultivation. rowth in Bioreactors. es of Industrial processes, list of antibiotics produced by fungi. oduction of penicillin zymes, Pectinase production as a case study	1
Unit III: Environme1.Biosorption:2.Biomass for of biomass.3.Biogas productionflour, molass	ental Biotechnology. use of fungi, algae and biological components. energy: Sources of biomass, advantages &disadvantages, uses uction from food processing waste: vegetable canning waste, es etc. biomass and Lignocellulosic residue.	1

Unit I	V: Food Biotechnologyand biotransformation	1
\triangleright	Factors affecting spoilage.	
\triangleright	Quality control of food.	
\triangleright	Enzyme immunoassays (ELISA).	
\triangleright	Radioimmunoassay (RIA), Monoclonal antibodies and DNA probes.	
	Biotransformation using: Freely suspended plant cells and Immobilized plant cells.	
\triangleright	Biotransformation for Vanillin production from Capsicum cell cultures.	
\triangleright	In vitro storage of germplasm, Cryopreservation.	

M.Sc. (MCB)	Semester IV Theory		
RJSPGBOTMCB303	Course Outcome 3.3:		
Paper-III	1. Molecular biology techniques, aseptic techniques, safe handling		
Plant	of microorganisms and establishment of pure cultures		
Biotechnology	2. Preparation of cultures and stock solutions		
	3. Students will learn industrial processes of recovery important products by various processes.		
	4. Study of Food Biotechnology and its application for Quality control of food		
	5. Environmental issues like solid waste management and green fuel technology		
	6. Mass Propagation of plants using <i>in vitro</i> technique		
	7. Industrial production of fine chemicals using plant cell cultures		
	Learning outcome:		
	Industrial Biotechnology will enable students to learn the practical application of the subject.		
	Learning the importance of Quality control of food.		
	Application of techniques of plant tissue culture.		
	To learn production of value-added chemicals by using green techniques like Biotransformation.		

M. Sc Botany Syllabus Semester III

Cours	e Code Topic	Credits			
RJSPG	RJSPGBOTMCB304 Molecular Biology and Cytogenetics				
	<u>: Cytology and Cancer Biology</u> Cell membrane and permeability: Molecular models of cell membrane, cell permeability. Differentiation of cell membrane, intercellular communications and gap junctions. Cell coat and cell recognition, cell surface.	1			
	Cell Cycle and Apoptosis: Mechanism of Cell division; Regulation, Roles of Cyclins and Cyclin dependent kinases, Cell Plate formation, PCD. Organization and function of mitochondrial and chloroplast genomes.				
	Cancer cells: Characteristics, division, spread, treatment. Course of cancer cell formation				
	Carcinogens: radiations, chemicals, Oncogenic virus.				
6.	Cancer and mutations, reproductive properties of transformed animal cell in culture, oncogenes, proto oncogenes and their conversion. Oncogenes and growth factors.				
<u>Unit l</u>	I: Plant Breeding	1			
1.	Aims and objectives, plant introductions and acclimatization.				
	Selection – Mass, Pure line and Clonal.				
3.	3. Hybridization techniques, hybridization in self-pollinated and				
	cross-pollinated plants.				
4.	Genetic control and manipulation of breeding systems including male sterility and apomixes.				
5.	Distant hybridization: In nature (plant breeding) – Barriers to the production of distant hybrids; Unreduced gametes in distant hybridization; Sterility in distant hybrids; Consequences of segregation in distant hybrids;				
6.	Applications and Achievements of distant hybridization in crop				
	improvement; Limitations of distant hybrids.	-			
	II: Immune System and Genetic Diseases	1			
1.	Phylogeny of immune system, innate and acquired immunity, nature and biology of antigens, major histocompatibility, complex cells of immune system, regulation of immune responses. Production of antibodies by plant cells and organs.				
2.	Immunity in Health and Disease: Immunodeficiency and AIDS				
3.	Genetic disorders, genetic counselling and gene therapy.				
4.	Biochemical disorders, sex linked disorders, cardiovascular disorders.				
Unit IV: Molecular plant Breeding (Transgenic Crops) and Plant Genetic					
-	eering				
	Natural method of gene transfer (<i>Agrobacterium</i> and virus), selectable markers.				
2.	Artificial methods of gene transfer: Direct DNA uptake by protoplast,				
С	Electroporation, Liposome mediated and particle gun transformation Production of Transgenic plants: Virus resistant & Herbicide – resistant				
٥.	Production of Transgenic plants: Virus resistant & Herbicide -resistant,				

plants, Bt Cotton, Golden rice.

- 4. Production of bio pharmaceuticals in transgenic plants.
- 5. Edible vaccines &Plant antibodies.
- 6. DNA-based molecular marker aided breeding: RAPD, RFLP, AFLP, STS, ISSR, Microsatellites.

M.Sc. (MCB)	Semester IV Theory			
RJSPGBOTMCB304	Course outcome 3.4:			
Paper-IV Molecular Biology and Cytogenetics	 Detailed study of plant breeding with hybridization techniques and its applications. Mechanism of molecular plant breeding of transgenic crops Detailed study of plant genetic engineering Cell cycle, Programmed cell death Organisation and functions of mitochondria and chloroplast genome 			
	Learning outcome:			
	 Understanding the mechanism of cancer biology and immunology Application in diagnostics Understanding the importance of plant breeding Understanding detailed concept of molecular plant breeding of transgenic crops Knowing the effect of plant genetic engineering and its applications 			

Hindi Vidya Prachar Samiti's, Ramniranjan Jhunjhunwala College of Arts, Science & Commerce

M. Sc Botany S	yllabus Semester III
----------------	----------------------

Practical	Plant Biotechnology	
RJSPGBOTMCBP303	 Preparation of stock solution and medium preparation Preparation of culture medium, stock solutions Establishment of different types of cultures: callus, root, micro propagation Visit to plant tissue culture laboratory Types of Bioreactors <i>Allium cepa</i> bioassay ELISA and Flow Cytometry Production of wine from different fruits and measurement of alcohol content Removal of aromatic amines from water sample by using enzymes from suitable source 	2
RJSPGBOTMCBP304	 Microscopic identification of cancer cell Genetic disorders Visit to a diagnostic laboratory and report writing Identify cultivars of any vegetable by Isoenzymes. Culturing of Drosophila and study of genetic traits. Blood group testing, Karyotypes of genetic disorders. Allium cepa bioassay for screening of toxicants 	
		2

M.Sc.	Semester IV Practical					
RJSPGBOTMCBP303	Course Outcome:					
RJSPGBOTMCBP304	1. Hands on training in various aspects of plant tissue culture					
Practical III and IV	2. Mass propagation of plants using tissue culture technique					
Plant Biotechnology	 Working on Aseptic techniques, safe handling of microorganisms and establishing pure cultures 					
	4. Maintenance of cultures - Paraffin embedding, Lyophilisation.					
	5. Preparation of culture medium, stock solutions					
	Determination of cell number, viable count method (using pour plate and serial dilution technique).					
	 7. Molecular Biology techniques 					
	Learning outcome:					
	1. Skill based training in plant tissue culture					
	2. Establishment and maintenance of culture					
	Understanding the application of molecular biology					

References

- 1. A handbook of Ethnobotany by S.K. Jain, V. Mudgal Chapter 1 & 3; Relevance of Ethnobotany.
- 2. A text Book of Palynology by K Bhattacharya, New Central Book Agency Pvt. Ltd., London
- 3. A Textbook of Botany- Angiosperms by B P Pandey
- 4. A Textbook of Systematic Botany by Sutaria
- 5. Alexopoulos, C.J., Mims, C.W., Blackwell, M. (1996). Introductory Mycology, John Wiley and Sons (Asia), Singapore. 4th edition.
- 6. An introduction to Embryology of Angiosperms by P Maheshwari, McGraw Hill Book Co.
- 7. An introduction to Genetic analysis Griffith Freeman and Company (2000)
- 8. Ausubel, F., Brent, R., Kingston, R. E., Moore, D.D., Seidman, J.G., Smith, J.A., Struhl, K. (1995). Short Protocols in Molecular Biology. John Wiley & Sons. 3rd edition.
- 9. Ayurveda Aharby P H Kulkarni
- 10. Bajracharya D. (1999). Experiments in Plant Physiology-A Laboratory Manual. Narosa Publishing House, New Delhi.
- 11. Becker WM, Kleinsmith LJ, Hardin J and Bertoni GP (2009). The world of the cell. 7th edition. Pearson Benjamin Cummings Publishing, San Fransisco.
- 12. Berg JM, Tymoczko JL and Stryer L (2011) biochemistry, W.H. Freeman and company.
- 13. Bhatnagar, S.P. & Moitra, A. (1996). Gymnosperms. New Age International (P) Ltd Publishers, New Delhi, India.
- 14. Bhojwani, S.S. and Bhatnagar, S.P. (2011). The Embryology of Angiosperms. Vikas Publication House Pvt. Ltd., New Delhi. 5th edition.
- 15. Bhojwani, S.S. and Razdan, M.K., (1996). Plant Tissue Culture: Theory and Practice. Elsevier Science Amsterdam. The Netherlands.
- 16. Bioinformatics Sunder rajan ,Himalaya Publications.
- 17. Book for Degree Students- Algae/Fungi/Bryophyta by B R Vasistha
- 18. Book for Degree Students- Pteridophyta/Gymnospersm by P C Vasistha
- 19. Campbell A. M., Heyer L. J. (2006) Discovering Genomics, Proteomics and Bioinformatics. II Edition. Benjamin Cummings.
- 20. Campbell NA, Reece JB, Urry LA, Cain ML, Wasserman SA, Minorsky PV, Jackson RB (2008). Biology, Pearson Benjamin cummings, USA. Education Inc. 8th edition; 4-5.
- 21. Campbell, MK (2012) biochemistry, 7th edition, published by cengage learning.
- 22. Campbell, PN and Smith AD (2011) biochemistry illustrated. 4th edition, published by Churchill Livingstone.
- 23. Chrispeels, M.J. and Sadava, D.E. (2003). Plants, Genes and Agriculture. Jones & Bartlett Publishers.
- 24. College Botany Volume I and II Gangulee, Das and Dutta latest edition. Central Education enterprises
- 25. Cooper GM and Hausman, RE (2009). The cell: a molecular approach. 5th edition. ASM Press and Sunderland, Washington DC, Sinauer associates, MA.
- 26. Cryptogamic Botany Volume I and II by G M Smith McGraw Hill.

- 27. Dawson C (2002). Practical research methods. UBS Publishers, New Delhi.
- 28. Dickison, W.C. (2000). Integrative Plant Anatomy. Harcourt Academic Press, USA.
- 29. DNA barcoding plants: taxonomy in a new perspective 2010. K Vijayan and C H Tsou, Current Science, 1530 1541.
- 30. Economic Botany by Hill, TATA McGRAW-HILL Publishing Co. Ltd.
- 31. Embryology of Plants by Bhojwani and Bhatnagar
- 32. Environmental Biology by Verma & Agrawal
- 33. Esau, K. (1977). Anatomy of Seed Plants. John Wiley & Sons, Inc., Delhi.
- 34. Fahn, A. (1974). Plant Anatomy. Pergmon Press, USA.
- 35. Fundamentals of Biostatics Rastogi Ane Books Pvt Ltd (2009)_
- 36. Fundamentals of Biostatistics by Rastogi.
- 37. Gardner, E.J., Simmons, M.J., Snustad, D.P. (1991). Principles of Genetics, John Wiley & sons, India. 8th edition.
- 38. Genetics by Russel. Wesley Longman Inc publishers. (5th edition)
- 39. Genetics by Winchester
- 40. Ghosh Z. and Bibekanand M. (2008) Bioinformatics: Principles and Applications. Oxford University Press.
- 41. Glick, B.R., Pasternak, J.J. (2003). Molecular Biotechnology- Principles and Applications of recombinant DNA. ASM Press, Washington.
- 42. Griffiths, A.J.F., Wessler, S.R., Carroll, S.B., Doebley, J. (2010). Introduction to Genetic Analysis. W. H. Freeman and Co., U.S.A. 10th edition.
- 43. Harborne, J.B. (1973). Phytochemical Methods. John Wiley & Sons. New York.
- 44. Hardin J, Becker G, Skliensmith LJ (2012). Beckar's world of the cell, pearson education Inc. USA 8th edition.
- 45. Hopkins, W.G. and Huner, A. (2008). Introduction to Plant Physiology. John Wiley and Sons. U. S.A. 4th edition.
- 46. Industrial Microbiology Casida New Age Internationa, New Delhi
- 47. Industrial Microbiology Mac Millan Publications, New Delhi
- 48. Instant Notes on Bioinformatics Westhead (2002) Taylor Francis Publications
- 49. Introduction to Bioinformatics by PK Banerjee, Chand Publication
- 50. Introduction to Biostatstics by P K Banerjee, Chand Publication.
- 51. Introduction to Plant Physiology Noggle and Fritz, Prentice Hall Publisher (2002)
- 52. Jeffrey, C. (1982). An Introduction to *Plant Taxonomy*. Cambridge University Press, Cambridge.
- 53. Johri, B.M. I (1984). Embryology of Angiosperms, Springer-Verlag, Netherlands.
- 54. Judd, W.S., Campbell, C.S., Kellogg, E.A., Stevens, P.F. (2002). Plant Systematics-A Phylogenetic Approach. Sinauer Associates Inc., U.S.A. 2nd edition.
- 55. Karp G (2010). Cell biology, john wiley and sons, USA 6th edition.
- 56. Klug, W.S., Cummings, M.R., Spencer, C.A. (2009). Concepts of Genetics. Benjamin Cummings. U.S.A. 9th edition.
- 57. Klug, W.S., Cummings, M.R., Spencer, C.A. (2012). Concepts of Genetics. Benjamin Cummings, U.S.A. 10th edition.
- 58. Kochhar, S.L. (2011). Economic Botany in the Tropics. MacMillan Publishers India Ltd.,

New Delhi. 4th edition.

- 59. Kochhar, S.L. (2012). Economic Botany in Tropics, MacMillan & Co. New Delhi, India.
- 60. Kumar, H.D. (1999). Introductory Phycology. Affiliated East-West. Press Pvt. Ltd. Delhi.2nd edition.
- 61. Maheshwari, J.K. (1963). Flora of Delhi. CSIR, New Delhi.
- 62. Mauseth, J.D. (1988). Plant Anatomy. The Benjammin/Cummings Publisher, USA.
- 63. Methods in Biostatistics by B K Mahajan.
- 64. Nelson DL, Lehninger AL, Cox MM (2008). Lehninger principles of biochemistry.5th edition, W.H. Freeman and company.
- 65. Parihar, N.S. (1991). An introduction to Embryophyta: Vol. I. Bryophyta. Central Book Depot. Allahabad.
- 66. Pevsner J. (2009) Bioinformatics and Functional Genomics, II Edition. Wiley-Blackwell.
- 67. Pharmacognosy Kokate, Purohit and Gokhale Nirali Publications
- 68. Physiological Plant Anatomy by Haberlandt, Mac Millan and Company
- 69. Plant Biotechnology by K. Ramavat
- 70. Plant Physiology by Mukherji & Ghosh
- 71. Plant Physiology by Taiz and Zeiger Sinauer Associatesinc. Publishers
- 72. Plant Physiology Salisbury and Ross CBS Publishers
- 73. Plant Systematics by Gurucharan Singh, Oxford and IBH Publ.
- 74. Plants in folk religion and mythology (Contribution to Ethnobotany by S.K.Jain 3rd Rev. Ed.).
- 75. Plants tissue culture by Dodds.
- 76. Plummer, D.T. (1996). An Introduction to Practical Biochemistry. Tata McGraw-Hill Publishing Co. Ltd. New Delhi. 3rd edition.
- 77. Pollen Morphology and Plant Taxonomy by G. Erdtman, Hafner Publ. Co., N.Y.
- 78. Post-Harvest Technology by Verma and Joshi, Indus Publication
- 79. Practical Biochemistry by David Plummer, McGraw Hill Publ.
- 80. Radford, A.E. (1986). Fundamentals of *Plant Systematics*. Harper and Row, New York.
- 81. Raghavan, V. (2000). Developmental Biology of Flowering plants, Springer, Netherlands.
- 82. Raven, P.H., Johnson, G.B., Losos, J.B., Singer, S.R., (2005). Biology. Tata McGraw Hill, Delhi, India.
- 83. Russell, P. J. (2010). iGenetics- A Molecular Approach. Benjamin Cummings, U.S.A. 3rd edition.
- 84. Ruzin, S.E. (1999). Plant Microtechnique and Microscopy, Oxford University Press, New York. U.S.A.
- 85. Sethi, I.K. and Walia, S.K. (2011). Text book of Fungi & Their Allies, MacMillan Publishers Pvt. Ltd., Delhi.
- 86. Shivanna, K.R. (2003). Pollen Biology and Biotechnology. Oxford and IBH Publishing Co. Pvt. Ltd. Delhi.
- 87. Singh, G. (2012). *Plant Systematics:* Theory and Practice. Oxford & IBH Pvt. Ltd., New Delhi. 3rdedition.
- 88. Snustad, D.P. and Simmons, M.J. (2010). Principles of Genetics. John Wiley and Sons

Inc., U.S.A. 5th edition.

- 89. Soil and soil fertility by Thompson & Thompson.
- 90. Stewart, C.N. Jr. (2008). Plant Biotechnology & Genetics: Principles, Techniques and Applications. John Wiley & Sons Inc. U.S.A.
- 91. Taiz, L., Zeiger, E., MØller, I.M. and Murphy, A (2015). Plant Physiology and Development. Sinauer Associates Inc. USA. 6th edition.
- 92. Taxonomy of Angiosperms by Pandey & Misra
- 93. Taxonomy of Vascular Plants by Lawrence George, H M, Oxford and IBH Publ.
- 94. Textbook of Economic Botany by V Verma
- 95. Tortora, G.J., Funke, B.R., Case, C.L. (2010). Microbiology: An Introduction, Pearson Benjamin Cummings, U.S.A. 10th edition.
- 96. Tymoczko JL, Berg JM, and Stryer L (2012) Biochemistry: a short course , 2nd Ed, W.H. Freeman.
- 97. Vander-Poorteri 2009 Introduction to Bryophytes. COP
- 98. Vashishta, P.C., Sinha, A.K., Kumar, A., (2010). Pteridophyta, S. Chand. Delhi, India.
- 99. Watson J.D., Baker, T.A., Bell, S.P., Gann, A., Levine, M., Losick, R. (2007). Molecular Biology of the Gene, Pearson Benjamin Cummings, CSHL Press, New York, U.S.A. 6th edition.
- 100. Wickens, G.E. (2001). Economic Botany: Principles & Practices. Kluwer Academic Publishers, The Netherlands.
- 101. Zar, J.H. (2012). Biostatistical Analysis. Pearson Publication, USA. 4th edition.

Scheme of Examinations

- 1. Internal Examination 40 marks various modes with different weightage (Presentation, seminar, mcq, quiz etc.)
- 2. One External (Semester End Examination) of 60 marks. Duration 2 ¹/₂ hours.
- 3. One Practical at the end of Semester consisting of Practical I 50 marks, Practical II 50 marks, Practical III 50 marks and Practical IV 50 marks separate passing in each practical
- 4. Minimum marks for passing Semester End Theory and Practical Exam is 40 %. Separate passing for Internal and Semester End examination.
- 5. For any KT examinations, there shall be ODD-ODD/EVEN-EVEN pattern followed.
- 6. Two short field excursions for habitat studies are compulsory. Field report submission is mandatory
- Field work of not less than eight hours duration is equivalent to one period per week for a batch of 15students.
- 8. A candidate will be allowed to appear for the practical examinations if he/she submits a certified journal of Botany or a certificate from the Head of the department / Institute to the effect that the candidate has completed the practical course of T.Y. B.Sc. Botany as per the minimum requirements.
- 9. In case of loss of journal, a candidate must produce a certificate from the Head of the department /Institute that the practical for the academic year were completed by the student. However, such a candidate will be allowed to appear for the practical examination but the marks allotted for the journal will not be granted.
- 10. HOD's decision, in consultation with the Principal, shall remain final and abiding to all.

Evaluation and Assessment

Evaluation (Theory): Total marks per course - 100. CIA - 40 marks CIA 1: Written test -20 marks CIA 2: Written Test / Assignment / Field Trip/mini project/ & Report -20 marks Semester End Examination – 60 marks Question paper covering all units

Evaluation of Practicals 200 marks (50 marks for each practical)

Course Semester End Examination in Semester III (RJSPGBOT301, RJSPGBOT302, RJSPGBOTPPB303/RJSPGBOTMCB303 & RJSPGBOTPPB304/RJSPGBOTMCB304)

Question	KNOWLEDGE	UNDERSTANDING	APPLICATION	TOTAL
			and	MARKS-
			ANALYSES	Per unit
Unit 1	06	03	03	12
Unit 2	06	03	03	12
Unit 3	06	03	03	12
Unit 4	06	03	03	12
Short notes from	06	03	03	12
topics covering all				
the units				
-TOTAL-	30	15	15	60
Per objective				
% WEIGHTAGE	50	25	25	100%

Evaluation of Practicals 200 marks/Semester SEMESTER V: (50 marks for each practical RJSPGBOTP301, RJSPGBOTP302, RJSPGBOTPPBP303/ RJSPGBOTMCBP303 & RJSBOTPPPBP304/ RJSPGBOTMCBP304)

Continuous Evaluation of practical components which require adequate duration for completion of the task, observation and interpretation: 25%

Course end Practical Evaluation of skills of students in terms of skill, analysis, interpretation and conclusion.

Hindi Vidya Prachar Samiti's, Ramniranjan Jhunjhunwala College of Arts, Science & Commerce

M. Sc Botany Syllabus Semester III

ASSESSMENT OF BOTANY FIELD TRIP REPORT

Dept. of Botany Course Code	Date	Roll No	<u></u>
Name of student:	UID No		
Marks/20			

Place of visit _____

Assessment Grid :Place one tick in each appropriate row. Overall mark should reflect the positions of ticks in the individual rows

(20)	Field Trip and Report				20-40 <i>%</i> 05-08 Marks	
30%	Organization of report	Introduction about the location, vegetation, Botanical Names, Family, Local name, Description using Botanical Term, reporting all the species seen, Handwritten or typed.	Few mistakes,	Many mistakes	Inadequate presentation	
(06)	-	6	5	4	3	
50%	Content	Excellent reporting of all the species observed in the field, ecological and morphological data,	the field but few of	relevant data	Poor, inadequate and insufficient data or just a list of the species without any data.	
		10/9	8	6	5	
10% (02)	Conclusion	Conclusion based on self observation. Type of forest and vegetation	Good conclusion, comments not independent	Satisfactory, but insufficient	Poor,irrelevant conclusion	
	Marks	2	2/1	1 /0.5	0.5	
5% (01)	References	Proper references, in required format	Proper references but no format	Few references	Irrelevant references	
	Marks -	1	1	0.5	0	
5% (01)	Attendance / participation	Attended and participated actively	Attended and participated	Infrequent Participation	No participation	
	Marks	1	1	0.5	0	

Comments:

Name and Signature of Faculty.

Mini Project Under graduate level Dept. of Course Code Da te UIDNo Roll No Marks /20 Name of student -----

ticks in the individual rows. In boxes that have more than one set of marks, cancel out the marks that are not applicable and circle the correctmarks.

Project work and report (Parameters)	Marks	80 – 100% Excellent	60 -80% Good	40 – 60 % Satisfactory	20 – 40 % Average
Project work done	10	10/9	8/7	6/5	4 /3
Report writing and conclusions					
	10	10/9	8/7	6/5	4 /3

Class	Course Name	Course Code	Topic focussing on Employability/ Entrepreneurship/skill development	Employability/ Entrepreneurship/ Skill development	Specific activity
S Y B Sc Botany	Plant Diversity I	RJSUBOT301, RJSUBOT401	Plant Diversity III,IV focuses on identification of plants ranging from microbes	The topics focuses on identifying plants ranging from lower forms Thallophyta till	Preparation of bio fertilizers
S Y B Sc Botany		RJSUBOT301 RJSUBOT302 RJSUBOT303	Concepts in Plant Anatomy, Biochemistry, Physiology, Genetics and Ecology which are essential to take up a career in research and teaching since these provide the Domain knowledge. Medicinal Botany gives a glimpse on plant based drugs and economically important products	Employability in field of the teaching and research. To learn the techniques to identify plant based drugs.	
S Y B Sc Botany	Practicals	RJSUBOTP301 RJSUBOTP302 RJSUBOTP303 RJSUBOTP301 RJSUBOT302 RJSUBOT303	Microscopical identification of lower forms of plants, identification of higher forms using morphological studies. Study of plants in different habitats and their adaptation. Plant pigments as natural pH indicator	1Analytical skills 2Interpretation skills 3Writing skills	Miniproject for developing Entreprenuerial skills, Field trips enhances skills of identification of plants in situ, organisational skills, team work.

Mapping of the course to employability/ Entrepreneurship/skill development