Re-Accredited « Re-Accredited « STD 1963 ST

Hindi Vidya Prachar Samiti's

RAMNIRANJAN JHUNJHUNWALA COLLEGE

OF ARTS, SCIENCE & COMMERCE

(Autonomous)

University of Mumbai

Refer to page nos: 04 and 05

highlighting component

of Research Project/Internship

Affiliated to

University of Mumbai

Syllabus for the M. Sc. Part I

Program: M. Sc. in Data Science & Artificial Intelligence

Program Code: RJSPGDSAI

(Choice Based Credit System with effect from the academic year 2022 – 2023 for Part I and 2023 – 2024 for Part II)

Sr. No.	Heading	Particulars
1	Title of course	M.Sc. in Data Science and Artificial Intelligence
2	Eligibility for admission	B.Sc. Computer Science, B.Sc. Information Technology and B.Sc. Statistics. B.Sc. Mathematics, BTech.
3	Passing Marks	40%
4	No. of Years, Semesters	2 Years, 4 Semesters
5	Level	Post Graduate
6	Pattern	Semester
7	Status	Introduced
8	To be implemented from Academic Year	Part I: 2020 – 2021, Part II: 2021 – 2022

Syllabus for Approval

Program Educational Objectives

- 1. To enable graduates to excel professionally by adapting to the dynamic needs of the academia, industry and research in the field of Data Science and Artificial Intelligence.
- 2. To develop in depth understanding of the key technologies in Data Science and Artificial Intelligence.
- 3. To enable student to excel in the field of Data Analytics, Data Mining, Machine Learning, Visualization Techniques, Predictive Analysis and Statistical modelling.
- 4. To practice the problems of analysis and decision making using big data.
- 5. To gain practical, hands-on experience with programming languages, data analysis tools and frameworks through coursework.
- 6. To enable graduates to use the concepts of machine learning, deep learning and natural language processing in the applications of Artificial Intelligence.

Program Outcomes

Students who have completed the M.Sc. in Data Science and Artificial Intelligence will be able to:

- 1. To apply statistical modelling and data analysis techniques to the solution of real-world business problems, effectively present results using data visualization techniques.
- 2. To test and train various machine learning algorithms for real world data and applications.
- 3. To create data warehouse and mine the data for analysis.
- 4. To analysis big data using various languages and tools.
- 5. To apply machine learning and deep learning algorithms to real-world problems.
- 6. To create the applications for analysis using deep learning and natural language processing concepts.
- 7. To recognize and analyze ethical issues in data security, integrity and privacy.

Course Structure

Semester I

Course Code	Course Name	Group	Teaching Scheme (Hrs/Week)		Credits
			Lectures	Practical	
RJSPGITDSAI101	Statistics for Data Science	СС	4	-	4
RJSPGITDSAI102	Data Warehousing	СС	4	-	4
RJSPGITDSAI103	Artificial Intelligence	СС	4	-	4
RJSPGITDSAI1L1	PG Lab – I (FDS)	PGL	-	2	2
RJSPGITDSAI1L2	PG Lab – II (DW)	PGL	-	2	2
RJSPGITDSAI1L3	PG Lab – III (AI)	MNP	-	2	2
RJSPGITDSAI1S1	Seminar – I	SE	-	1	1
RJSPGITDSAI1P1	Professional Elective – I (Python for DS/ Applied Mathematics for DS)	PE	3	-	3
RJSPGITDSAI111	Career Advancement Course (RIC)	CAC	2	-	2
	Total		16	8	24

Semester II

Course Code	Course Name	Group	Teaching Scheme (Hrs/Week)		Credits
			Lectures	Practical	
RJSPGITDSAI201	Machine Learning	СС	4	-	4
RJSPGITDSAI202	Big Data Technology	СС	4	-	4
RJSPGITDSAI203	Soft computing	СС	4	-	4
RJSPGITDSAI2L1	PG Lab – IV (ML)	PGL	-	2	2
RJSPGITDSAI2L2	PG Lab – V (BDT)	PGL	-	2	2
RJSPGITDSAI2L3	PG Lab – VI (SC)	MNP	-	2	2
RJSPGITDSAI2R1	Mini Project	SE	-	1	1
RJSPGITDSAI2P2	Professional Elective – II (IP&CV/CC)	PE	3	-	3
RJSPGITDSAI2I1	Career Advancement Course (BI)	CAC	2	-	2
	Total		16	8	24

Semester III

Course Code	Course Name	Group	Teaching Scheme (Hrs/Week)		Credits
			Lectures	Practical	
RJSPGITDSAI301	Natural Language Processing	СС	4	-	4
RJSPGITDSAI302	Big Data Analytics	СС	4	-	4
RJSPGITDSAI303	Deep Learning	СС	4	-	4
RJSPGITDSAI3L1	PG Lab – VII (NLP)	PGL	-	2	2
RJSPGITDSAI3L2	PG Lab – VIII (BDA)	PGL	-	2	2
RJSPGITDSAI3L3	PG Lab – IX (DL)	DES	-	2	2
RJSPGITDSAI3PL4	PG Lab – X (E-I / E-II)	PEL		2	2
RJSPGITDSAI3P3	Professional Elective – III (Robotics & RPA/ Block chain)	PE	4	-	4
	Total		16	8	24

Semester IV

Course Code	Course Name	Group	Teaching Scheme (Hrs/Week)		Credits
			Lectures	Practical	
RJSPGITDSAI4D2	Dissertation – II (Major Project)	DES	-	30	12
RJSPGITDSAI4D3	Industrial Internship	II	-	30	12
	Total		-	60	24

Note:

Sr. No.	Category	Credits	Credits				
		Semester I	Semester II	Semester III	Semester IV	Credits	
1	Core Courses (CC)	12 (3 Courses)	12 (3 Courses)	12 (3 Courses)	-	36	
2	PG Labs (PGL) PEL	6 (3 Courses) -	6 (3 Courses) -	6 (3 Courses) 2 (1 Course)	-	12 2	
3	Mini Project (MNP)	-	1	-	-	1	
4	Seminar (SE)	1	-	-	-	1	
5	Professional Electives (PE)	3	3	4	-	10	
6	Career Advancement Course (CAC)	2	2	-	-	4	
7	Dissertation – II (Major Project) (DES)	-	-	-	12	12	
8	Industrial Internship (II)	-	-	-	12	12	
Total Credits		24	24	24	24	96	

Student have to register for the courses as per the following guidelines:

Core Courses

Semester I

Course Code	Course Name	Group	Teaching	Teaching	
			Scheme		
			(Hrs/Week)		
			Lectures	Practical	
RJSPGITDSAI101	Statistics of Data Science	сс	4	-	4

Course Objectives

- 1. To provide basic knowledge of data science.
- 2. To provide the foundation on topics in statistical methods and applied probability which forms the basis for data science.
- 3. To provide the foundation on topics of mathematics which forms the basis for data science.
- 4. To address the issues and the principals of estimation theory, testing hypothesis and regression and prediction.

Learning Outcomes:

- 1. Demonstrate the competency on topics like basics of data science, data transformation, statistical methods, applied probability etc.
- 2. Apply the various distribution methods to data.
- 3. Use statistical tests in testing hypothesis on data.
- 4. Demonstrate the competency on topics like unbiasedness of estimators, methods of Maximum Likelihood Estimation and Central Limit Theorem.
- 5. Perform exploratory analysis of multivariate data.

Unit	Topics	Lectures
Unit I	Basics of Data ScienceDecision Theory, Estimation Theory, Coordinate Systems, LinearTransformationsData Collection, Modelling and Compilation, Data Analysis, DataPresentation and VisualizationData Science Software Tools, Programming Languages for Data Science,Applications of Data Science	10
Unit II	 Data and Sampling Distributions Random sampling and sample bias: Bias, Random selection, Selection Bias: Regression to mean, Sampling distributions of a statistic: Central limit theorem, Standard error, Bootstrap, Resampling, Confidence Intervals. Distributions Normal distribution: Standard normal and QQ plots, Long-tailed distributions, Student's t-distribution, Binomial distribution, Poisson distribution, Exponential distribution and Weibull distributions. Significance Testing A/B Testing, Hypothesis test: Null hypothesis, Alternative hypothesis, Oneway and Two-way hypothesis test, Resampling. 	10

	Data Science & Artificial Intelligence Synabus	
Unit III	Basic Probability and Terms Events and their Probabilities, Rules of Probability, Conditional probability and independence, Permutations and combinations, Bayer's Theorem.	10
	 Descriptive Statistics, Compound probability, Conditional probability. Data Transformations and quality analysis Merge, Rollup, Transpose and Append, Missing Analysis and Treatment, Outlier analysis and treatment. 	
Unit IV	Hypothesis testingNull hypothesis, Alternative hypothesis, One-way and Two-way hypothesistest, Permutation test, Exhaustive and bootstrap permutation test, P-values,t-Test, Multiple testing, Degree of Freedom, ANOVA: F-statistics andtwoway ANOVA, Chi-square test, Fisher's exact test, Power and sample size.Regression and PredictionLinear regression, Multiple linear regression, Cross-validation, Modelselection and stepwise selection, Weighted regression, Factor variables inregression, Interpreting the regression equation, Regression diagnostic,Polynomial and spline regression.	10
Referer	ices	
1.	"Fundamentals of Data Science: Take the First Step to Become A Data Scientist" Burns, Amazon KDP Printing and Publishing.	', Samuel
2.	"Practical Statistics for Data Science", Peter Bruce, Andrew Bruce, O'Reilly, 201	7.
3.	"Statistics for Data Science", James D. Miller, Packt, 2017.	
4.	"Probability and Statistics for Engineers", Dr. J. Ravichandran,2010.	
5.	"R for data Science: Import, Tidy, Transform, Visualize and Model Data", Hadley Garrett Grolemund.	/ Wickham,
6.	"Data Analysis with R", Tony Fischetti, 2015.	
7.	"Mastering Data Analysis with R", Gergely Daroczi, 2015.	
8.	"R Cookbook", Paul Teetor, O'Reilly, 2017.	
9.	"Practical Data Science Cookbook", Prabhanjan Tatter, Tony Ojeda, Sean Patrik Benjamin Bengfort, Abhijit Dasgupta, 2 nd Edition, Packt, 2014	Murphy,

Course Code	Course Name	Group	Teaching So (Hrs/Wee	cheme k)	Credits
			Lectures	Practical	
RJSPGITDSAI102	Data Warehousing	СС	4	-	4

Course Objectives

- 1. To learn the concepts of data warehouse and business intelligence.
- 2. To provide in-depth knowledge of dimension modelling.
- 3. To learn how to build and use data warehouse for various applications like Retail Sales, Order Management, Inventory, Customer Relationship Management.

Learning Outcomes

- 1. Create the dimension model for any application.
- 2. Perform ETL process on source data and send it to data warehouse database.
- 3. Analyse the data for various applications.

Unit	Topics	Lectures
Unit I	Data Warehousing, Business Intelligence, and Dimensional Modeling Primer Different Worlds of Data Capture and Data Analysis, Goals of Data Warehousing and Business Intelligence, Dimensional Modeling Introduction, Kimball's DW/BI Architecture, Alternative DW/BI Architectures, Dimensional Modeling Myths.	10
Unit II	Kimball Dimensional Modeling Techniques Overview Fundamental Concepts, Basic Fact Table Techniques, Basic Dimension Table Techniques, Integration via Conformed Dimensions, Dealing with Slowly Changing Dimension Attributes, Dealing with Dimension Hierarchies.	10
Unit III	Retail Sales Four-Step Dimensional Design Process, Retail Case Study, Dimension Table Details, Retail Schema in Action, Retail Schema Extensibility, Fact less Fact Tables, Dimension and Fact Table Keys, Resisting Normalization Urges. Order Management Order Management Bus Matrix, Order Transactions, Invoice Transactions, Accumulating Snapshot for Order Fulfilment Pipeline.	10
Unit IV	Inventory Value Chain Introduction, Inventory Models, Fact Table Types, Value Chain Integration, Enterprise Data Warehouse Bus Architecture, Conformed Dimensions. Customer Relationship Management Overview, Customer Dimension Attributes, Bridge Tables for Multivalued Dimensions, Complex Customer Behavior, Customer Data Integration Approaches, Low Latency Reality Check.	10

References

- 1. "The Data Warehouse Toolkit: The Definitive Guide to Dimensional Modeling", Ralph Kimball Margy Ross, Wiley.
- 2. "The Data Warehouse ETL Toolkit: Practical Techniques for Extracting, Cleaning, Conforming, and Delivering Data", Ralph Kimball, Joe Caserta.
- 3. "Building the Data Warehouse", Fourth Edition, W. H. Inmon, Wiley.

Course Code	Course Name	Group	Teaching Scheme		Credits
			Lectures	Practical	
RJSPGITDSAI103	Artificial Intelligence	СС	4	-	4

Course Objectives

- 1. To gain a historical perspective of AI and its foundations.
- 2. To become familiar with basic principles of AI toward problem solving, inference, perception, knowledge representation, and learning.
- 3. To investigate applications of AI techniques in intelligent agents, expert systems, artificial neural networks and other machine learning models.
- 4. Experience AI development tools such as an 'AI language', expert system shell, and/or data mining tool.

Learning Outcomes

- 1. Demonstrate fundamental understanding of the history of artificial intelligence (AI) and its foundations
- 2. Apply basic principles of AI in solutions that require problem solving, inference, perception, knowledge representation, and learning.
- 3. Demonstrate awareness and a fundamental understanding of various applications of AI techniques in intelligent agents, expert systems, artificial neural networks and other machine learning models.
- 4. Demonstrate proficiency developing applications in an 'AI language'.

Unit	Topics	Lectures
Unit I	Introduction and Problem Solving	10
	Introduction	
	What is AI? Foundation of AI, History of AI Intelligent Agents: Agents and	
	Environment, concept of Rationality, Nature of Environments, Structure of	
	Agents.	
	Problem Solving	
	Problem Solving Agents, Example Problems, searching for solutions,	
	Uninformed search strategies – (Breadth First, Uniform cost, Depth First,	
	Depth Limited, Iterative deepening depth first, bidirectional), informed	
	search strategies – (Greedy best first, A*, Optimality of A*, Memory	
	bounded), Heuristic Functions.	
	Beyond Classical Search	
	Local search algorithms and optimization problems, local search in	
	continuous spaces, searching with non-deterministic actions, searching with	
	partial observations, online search agents and unknown environments.	
	Adversarial Search	
	Games, Optimal decision in games, AlphaBeta Pruning, Imperfect RealTime	
	Decisions, Stochastic Games, Partially Observable Games, Defining	
	Constraint Satisfaction Problems, Constraint Propagation: Inference in CSPs,	
	Backtracking Search for CSPs.	

	Data Science & Artificial Intelligence Syllabus	
Unit II	Knowledge, Reasoning and Planning	10
	Logical Agents	
	Knowledge-Based Agents, Propositional Logic, Propositional Theorem	
	Proving, Horn clauses and definite clauses, Forward and backward chaining,	
	Effective Propositional Model Checking	
	First Order Logic	
	Syntax and Semantics of First-Order Logic, using First order logic,	
	Knowledge	
	Engineering in First-Order Logic	
	Inference in First Order Logic	
	Unification and Lifting, Forward Chaining, Backward chaining, resolution	
	Classical Planning and Acting	
	Definition, Algorithms for Planning as State-Space Search, planning graphs,	
	analysis of planning approaches.	
Unit III	Uncertain Planning and Reasoning	10
	Quantifying Uncertainty	
	Acting under Uncertainty, Basic Probability Notation, Inference Using Full	
	Joint Distributions, Independence, Bayes' Rule and Its Use.	
	Probabilistic Reasoning	
	Representing Knowledge in an Uncertain Domain, The Semantics of	
	Bayesian Networks, Efficient Representation of Conditional Distributions,	
	Relational and First-Order Probability Models.	
	Making Simple Decisions	
	The Basis of Utility Theory, Utility Functions, Multiattribute Utility Functions,	
	Decision Networks, The Value of Information.	
	Making Complex Decisions	
	Sequential Decision Problems, Value Iteration, Policy Iteration, Partially	
	Observable MDPs, Decisions with Multiple Agents: Game Theory,	
	Mechanism Design.	
Unit IV	Uncertain Planning and Reasoning	10
	Quantifying Uncertainty	
	Acting under Uncertainty, Basic Probability Notation, Inference Using Full	
	Joint Distributions, Independence, Bayes' Rule and Its Use.	
	Probabilistic Reasoning	
	Representing Knowledge in an Uncertain Domain, The Semantics of	
	Bayesian Networks, Efficient Representation of Conditional Distributions,	
	Relational and First-Order Probability Models.	
	Making Simple Decisions	
	The Basis of Utility Theory, Utility Functions, Multiattribute Utility	
	Functions, Decision Networks, The Value of Information.	
	Making Complex Decisions	
	Sequential Decision Problems, Value Iteration, Policy Iteration, Partially	
	Observable MDPs, Decisions with Multiple Agents: Game	
	Theory, Mechanism Design.	

References

- 1. "Artificial Intelligence: A Modern Approach", 3rd Edition, Stuart Russell and Peter Norvig, Hawkins, J. and Blakeslee, S. On Intelligence. Times Books, 2004.
- 2. "Artificial Intelligence theory and practice", Dean, T., Allen, J. and Aloimonos, Y., New York: Benjamin Cummings, 1995.
- 3. "Essentials of Artificial Intelligence", Ginsberg, M., Palo Alto, CA: Morgan Kaufmann, 1993.
- "The Description Logic Handbook: Theory, Implementation and Applications ", Baader, F., Calvanese, D., McGuinness, D., Nardi, D., & Patel-Schneider, P., Cambridge University Press, 2003.
- 5. "Knowledge Representation", Brachman, R. J. & Levesque, H. J., New York: Elsevier, 2004.
- 6. "Expert Systems and Probabilistic Network Models", Castillo, E., Gutierrez, J. M., Hadi, A. S., Berlin: Springer, 1996.
- 7. "Neural Networks for Pattern Recognition", Bishop, C. M., New York: Oxford University Press, 1995.

PG Labs

Course Code		Course Name	Group	Teaching Scheme (Hrs/Week)		Credits
				Lectures	Practical	
RJSPGITDSAI1L1		PG Lab – I	PGL	-	2	2
		Statistics of Data Science				
Practic	al List:					
1.	Data Colle	ection, Modelling and Compilation.				
2.	2. Data Visualization.					
3. Exploratory data analysis.						
4.	Exploring	Binary and categorical data.				
5.	Data and	sampling distributions.				
6.	Significan	ce testing.				
7.	Data trans	sformations and quality analysis.				
8.	Hypothes	is testing.				
9.	Regressio	n and prediction.				
10.	Logistic Re	egression				

Course Code	Course Name	Group	Teaching Scheme (Hrs/Week)		Credits
			Lectures	Practical	
RJSPGITDSAI1L2	PG Lab – II	PGL	-	2	2
	Data Warehousing				

Practical List:

- 1. Creating the database using various constraints.
- 2. Using DDL, DML, DCL and TCL statements.
- 3. Introduction to ER model and Relational Model.
- 4. Creating Dimension Model for a Datawarehouse.
- 5. Loading data into the dimension and fact tables.
- 6. Validating data while loading into a warehouse.
- 7. ETL Staging process.
- 8. Creation of Cube.
- 9. Using data analysis services for data mining.
- 10. Creating Reports and charts.

RJSPGITDSAI1L3 PG Lab - III Artificial Intelligence Practical List: 1. Write a programme to condusearch.(BFS,DFS etc) 2. Write a programme to condusearch.(A*, AO*) 3. Write a programme to conduction Climbing) 4. Write a programme to condustac-toe,N-Queen,Tower of Hands 5. Simple/Multiple Linear Regree 6. Bayesian Classification. 7. Decision tree Classification.	PGL ct uninformed ct informed	Lectures -	Practical 2	2				
RJSPGITDSAI1L3 PG Lab - III Artificial Intelligence Practical List: 1. Write a programme to condusearch.(BFS,DFS etc) 2. Write a programme to condusearch.(A*, AO*) 3. Write a programme to conduction Climbing) 4. Write a programme to condustac-toe,N-Queen,Tower of Hand 5. Simple/Multiple Linear Regree 6. Bayesian Classification. 7. Decision tree Classification.	PGL ct uninformed ct informed	-	2	2				
Artificial Intelligence Practical List: 1. Write a programme to condusearch.(BFS,DFS etc) 2. Write a programme to condusearch.(A*, AO*) 3. Write a programme to conducting 4. Write a programme to condustac-toe,N-Queen,Tower of Hand 5. Simple/Multiple Linear Regree 6. Bayesian Classification. 7. Decision tree Classification.	ct uninformed ct informed							
 Practical List: 1. Write a programme to condusearch.(BFS,DFS etc) 2. Write a programme to condusearch.(A*, AO*) 3. Write a programme to conduclimbing) 4. Write a programme to condustac-toe,N-Queen,Tower of Hands 5. Simple/Multiple Linear Regree 6. Bayesian Classification. 7. Decision tree Classification. 	ct uninformed ct informed							
 Write a programme to condusearch.(BFS,DFS etc) Write a programme to condusearch.(A*, AO*) Write a programme to conducting) Write a programme to condustac-toe,N-Queen,Tower of Hands Simple/Multiple Linear Regree Bayesian Classification. Decision tree Classification. 	ct uninformed ct informed							
 Write a programme to condusearch.(BFS,DFS etc) Write a programme to condusearch.(A*, AO*) Write a programme to conducting) Write a programme to condustac-toe,N-Queen,Tower of Hands Simple/Multiple Linear Regree Bayesian Classification. Decision tree Classification. 	ct uninformed ct informed							
 search.(BFS,DFS etc) 2. Write a programme to condusearch.(A*, AO*) 3. Write a programme to conducting) 4. Write a programme to condustac-toe,N-Queen,Tower of Hands 5. Simple/Multiple Linear Regree 6. Bayesian Classification. 7. Decision tree Classification. 	ct informed							
 Write a programme to condusearch.(A*, AO*) Write a programme to conducting) Write a programme to condustac-toe,N-Queen,Tower of Hand Simple/Multiple Linear Regree Bayesian Classification. Decision tree Classification. 	ct informed							
search.(A*, AO*) 3. Write a programme to condu Climbing) 4. Write a programme to condu tac-toe,N-Queen,Tower of Hand 5. Simple/Multiple Linear Regree 6. Bayesian Classification. 7. Decision tree Classification.	at has suite to a such (1911)							
 Write a programme to condu Climbing) Write a programme to condu tac-toe,N-Queen,Tower of Hand Simple/Multiple Linear Regree Bayesian Classification. Decision tree Classification. 	an la accustant a a a a unit. A CU							
Climbing) 4. Write a programme to condu tac-toe,N-Queen,Tower of Han 5. Simple/Multiple Linear Regre 6. Bayesian Classification. 7. Decision tree Classification.	3. Write a programme to conduct heuristic search.(Hill							
 4. Write a programme to condutac-toe, N-Queen, Tower of Hands 5. Simple/Multiple Linear Regree 6. Bayesian Classification. 7. Decision tree Classification. 	Climbing)							
tac-toe,N-Queen,Tower of Han 5. Simple/Multiple Linear Regre 6. Bayesian Classification. 7. Decision tree Classification.	ct game search.(Tic-							
 5. Simple/Multiple Linear Regre 6. Bayesian Classification. 7. Decision tree Classification. 9. Write a programme to do asi 	tac-toe,N-Queen,Tower of Hanoi)							
 6. Bayesian Classification. 7. Decision tree Classification. 9. Write a programme to do asi 	5. Simple/Multiple Linear Regression.							
7. Decision tree Classification.								
0 Write a programme to do rai	7. Decision tree Classification.							
8. Write a programme to do reinforcement learning in								
a grid world.								
9. Write a programme to run va		9. Write a programme to run value and policy iteration						
in a grid world.	lue and policy iteratior	1	in a grid world.					
10. Implement Artificial Neural	lue and policy iteration	1						

Professional Electives

Course Code		Course Name	Group	Teaching (Hrs/Week	Scheme	Credits	
				Lectures	Practical		
RJSPGITE	OSAI1P1	Professional Elective – I: Python for Data Science	PE	3	-	3	
Course O	bjectives						
1. T	o learn the	concepts of python programming.					
2. T	o provide ir	n-depth knowledge python.		liestiene in e	lata saianaa D	ata Analusia	
3. I	Data analysis.						
Learning	Outcomes						
Upon cor	npletion of	this course, the student should be a	able to				
1. C	reate the p	rograms in python for different app	lication.				
2. P 2 F	erform clea	insing on data and various function	s and class	ses.			
Э. L			iteu piogi	anning.			
Unit	Topics					Lectures	
Unit I	Introducti	ion of high-level language:				10	
	Keywords	and identifiers, statements & com	ments, py	thon variable	es, Datatypes		
	and type conversion, I/O and import, python operators, Namespace.						
	Python Fl	ow Control:					
	If-else, for and while loop, continue and break statement, pass, try catch,						
	Python Fu	unctions:					
	Functions	and arguments, recursion function	, lambda i	function, Bui	ilt-in function		
	global local functions, Global keywords, Modules and Packages.						
Unit II	Python D	atatypes:				10	
	Numbers,	List, Tuple, Array, string, Set, Dictio	onary.				
	Python Fi	les:					
	File opera	tion, Directory, Exception handling					
	Python O	bject & Class:					
	Introducti	on of OPPs, class, Inheritance, oper	rator over	loading.			
Unit III	Explorato	ry Data Analysis: data analysis with	n pandas d	lataframe, d	ata cleansing,	10	
	report ger	neration and web scrapping.					
	Visual Dat	ta Analysis : Pyplot, Plotting, Marke	rs, Line, La	abels, Grid, S	Subplot,		
	Scatter, Ba	ars, histogram, Piecharts, heatmap,	boxplot.				

Unit IV	Advance Python Programming File handling, read and write files, delete file, with statement. map, itr and zip functions, Regular Expression, abstract classes, constructors and destructors, decorators and Generators	10
Referen	ces	
1.	"Programming Python, Book by Mark Lutz. "	
2.	"Fluent Python, Book by Luciano Ramalho."	
3.	"https://www.w3schools.com/python/default.asp"	
2. 3.	"https://www.w3schools.com/python/default.asp"	

Course Code	Course Name	Group	Teaching Scheme (Hrs/Week)		Credits
			Lectures	Practical	
RJSPGITDSAI1P1	Professional Elective – I: Mathematics for Data Science	PE	3	-	3

Course Objectives

- 1. To learn the concepts of mathematics that used in field of Data Science.
- 2. To provide in-depth knowledge of Linear Algebra and Calculus.

Learning Outcomes

- 1. Demonstrate understanding of basic mathematical concepts in data science, relating to linear algebra, and calculus
- 2. Employ methods related to these concepts in a variety of data science applications.
- 3. Apply logical thinking to problem-solving in context.
- 4. Use appropriate technology to aid problem-solving and data analysis.

Unit	Topics	Lectures
Unit I	 Linear Algebra: Scalars, Vectors, Matrices and their properties, Vector Addition and Multiplication, Norm of a vector, Dot product of two vectors, Cross products, Relation between norm and dot product, Orthogonal and Orthonormal Vectors, Linear Independence of vectors, Linear Dependence and span Scalars, Vectors and Matrices: Matrices, Visualizing matrices, Determinants, Properties of Matrices, Matrix multiplication, Types of Matrices, Transpose of matrix, Identity and 	10
	Inverse of a Matrix, Determinant of a Matrix Eigens: Eigen values, Eigen Vectors	

1101+11	Functions	10
Onith	Functions.	10
	Punctions, New Functions Iron Old, Families of Functions, Inverse Functions,	
	Limits AND CONTINUIT:	
	Continuity Continuity of Trigonomotric Evaponatical and Inverse Eurotions	
	THE DERIVATIVE:	
	Tangent Lines and Rates of Change, The Derivative Function, Introduction to	
	Techniques of Differentiation, The Product and Quotient Rules, Derivatives of	
	Trigonometric Functions, The Chain Rule, Euclidian Geometry	
Unit III	DIFFERENTIATION:	10
	Implicit Differentiation, Derivatives of Logarithmic Functions, Derivatives of	
	Exponential and Inverse Trigonometric Functions	
	THE DERIVATIVE IN GRAPHING AND APPLICATIONS:	
	Analysis of Functions I: Increase, Decrease, and Concavity, Analysis of Functions II:	
	Relative Extrema; Graphing Polynomials, Absolute Maxima and Minima, Applied	
	Maximum and Minimum Problems, Rolle's Theorem; Mean-Value Theorem	
Unit IV	INTEGRATION:	10
•	An Overview of the Area Problem. The Indefinite Integral . Integration by	10
	Substitution . The Definition of Area as a Limit: Sigma Notation. The Definite	
	Integral. The Fundamental Theorem of Calculus, Rectilinear Motion Revisited	
	Using Integration, Average Value of a Function and its Applications, Evaluating	
	Using Integration, Average Value of a Function and its Applications, Evaluating Definite Integrals by Substitution, Logarithmic and Other Functions Defined by	
	Using Integration, Average Value of a Function and its Applications, Evaluating Definite Integrals by Substitution, Logarithmic and Other Functions Defined by Integrals	
	Using Integration, Average Value of a Function and its Applications, Evaluating Definite Integrals by Substitution, Logarithmic and Other Functions Defined by Integrals PARTIAL DERIVATIVES:	
	Using Integration, Average Value of a Function and its Applications, Evaluating Definite Integrals by Substitution, Logarithmic and Other Functions Defined by Integrals PARTIAL DERIVATIVES: Functions of Two or More Variables, Limits and Continuity, Partial Derivatives,	
	Using Integration, Average Value of a Function and its Applications, Evaluating Definite Integrals by Substitution, Logarithmic and Other Functions Defined by Integrals PARTIAL DERIVATIVES: Functions of Two or More Variables, Limits and Continuity, Partial Derivatives, Differentiability, Differentials, and Local Linearity, The Chain Rule, Directional	
	Using Integration, Average Value of a Function and its Applications, Evaluating Definite Integrals by Substitution, Logarithmic and Other Functions Defined by Integrals PARTIAL DERIVATIVES: Functions of Two or More Variables, Limits and Continuity, Partial Derivatives, Differentiability, Differentials, and Local Linearity, The Chain Rule, Directional Derivatives and Gradients, Tangent Planes and Normal Vectors, Maxima and	
	Using Integration, Average Value of a Function and its Applications, Evaluating Definite Integrals by Substitution, Logarithmic and Other Functions Defined by Integrals PARTIAL DERIVATIVES: Functions of Two or More Variables, Limits and Continuity, Partial Derivatives, Differentiability, Differentials, and Local Linearity, The Chain Rule, Directional Derivatives and Gradients, Tangent Planes and Normal Vectors, Maxima and Minima of Functions of Two Variables	
Referenc	Using Integration, Average Value of a Function and its Applications, Evaluating Definite Integrals by Substitution, Logarithmic and Other Functions Defined by Integrals PARTIAL DERIVATIVES: Functions of Two or More Variables, Limits and Continuity, Partial Derivatives, Differentiability, Differentials, and Local Linearity, The Chain Rule, Directional Derivatives and Gradients, Tangent Planes and Normal Vectors, Maxima and Minima of Functions of Two Variables	
Referenc	Using Integration, Average Value of a Function and its Applications, Evaluating Definite Integrals by Substitution, Logarithmic and Other Functions Defined by Integrals PARTIAL DERIVATIVES: Functions of Two or More Variables, Limits and Continuity, Partial Derivatives, Differentiability, Differentials, and Local Linearity, The Chain Rule, Directional Derivatives and Gradients, Tangent Planes and Normal Vectors, Maxima and Minima of Functions of Two Variables es	
Referenc 1	Using Integration, Average Value of a Function and its Applications, Evaluating Definite Integrals by Substitution, Logarithmic and Other Functions Defined by Integrals PARTIAL DERIVATIVES: Functions of Two or More Variables, Limits and Continuity, Partial Derivatives, Differentiability, Differentials, and Local Linearity, The Chain Rule, Directional Derivatives and Gradients, Tangent Planes and Normal Vectors, Maxima and Minima of Functions of Two Variables es Calculus: by Howard Anton	
Referenc 1	Using Integration, Average Value of a Function and its Applications, Evaluating Definite Integrals by Substitution, Logarithmic and Other Functions Defined by Integrals PARTIAL DERIVATIVES: Functions of Two or More Variables, Limits and Continuity, Partial Derivatives, Differentiability, Differentials, and Local Linearity, The Chain Rule, Directional Derivatives and Gradients, Tangent Planes and Normal Vectors, Maxima and Minima of Functions of Two Variables es Calculus: by Howard Anton	
Referenc 1	Using Integration, Average Value of a Function and its Applications, Evaluating Definite Integrals by Substitution, Logarithmic and Other Functions Defined by Integrals PARTIAL DERIVATIVES: Functions of Two or More Variables, Limits and Continuity, Partial Derivatives, Differentiability, Differentials, and Local Linearity, The Chain Rule, Directional Derivatives and Gradients, Tangent Planes and Normal Vectors, Maxima and Minima of Functions of Two Variables es Calculus: by Howard Anton	

Career Advancement Course

Course Code		Course Name	Group	Teaching So (Hrs/Wee	cheme k)	Credits
				Lectures	Practical	
RJSPGI	GITDSAI1I1 Research in Computing CAC 2 -				2	
Course	Course Objectives					
1.	1. To be able to conduct business research with an understanding of all					
2.	2. the latest theories.					
3.	. To develop the ability to explore research techniques used for solving					
4.	. any real world or innovate problem.					
Learnir	ning Outcomes					
Upon c	Upon completion of this course, the student should be able to					
1.	1. Use various stages of research process.					
2.	Apply research methods.					
3.	Use various	methods for data collection.				
4.	Apply the n	nethods of measurement and sam	pling.			

Unit	Topics	Lectures
Unit I	 Introduction: research meaning and characteristic, research objectives, Positivism and postpositivistic approach to research. Business Research: Role of Business Research, Information Systems and Knowledge Management, Theory Building, Organization ethics and Issues. Beginning Stages of Research Process: Problem definition, Qualitative research, Quantitative Research, primary and Secondary data research. 	10
Unit II	 Research Methods and Data Collection: Survey research, communicating with respondents, Observation methods, Descriptive and experimental Research type, Inductive and deductive approach, Action research, research steps. Formulation of research problem: problem selection, literature review, formulation of hypothesis. Variables: dependent, independent and Intervening variables. 	10
Unit III	 Data collection and sampling: Probability sampling, Non probability sampling, Survey method, contact method, questioner. Selection of project domain: Publication ethics, Tools and evaluation. Selection of tentative project area and process of literature survey – Literature survey components and procedures Basic components of a research paper – procedures and processes, Journal types, Scopus, web of science, Science Citation Index, H-index, Google citations. 	10

Unit IV	Research Paper Writing Title selection, paragraph writing, report design, conclusion formation, diagrams and equation, citations, plagiarism, paper format, scopes index journals, predatory journals, digital object identifier/ISBN number and publication, research ethics.	10		
	Presentation of selected project proposal: Oral presentation. Preparation of a report on the selected project proposal, Attending special invited lectures, practical orientation in searching and collecting literature through library, online tools, presenting a seminar on selected project.			
References				
1	 "Business Research Methods", William G. Zikmund, B J Babin, J.C. Carr, At Adhikari, M. griffin, Cengage, 8e, 2016. "Business Analytics", Albright Winston, Cengage 5e, 2015. 	tanu		

Semester II

Course Code	Course Name	Group	Teaching Scheme (Hrs/Week)		Credits
			Lectures	Practical	
RJSPGITDSAI201	Machine Learning	СС	4	-	4
Course Objectives					

- 1. To introduce various statistical and machine learning concepts and methods.
- 2. To introduce machine learning solutions to regression, classification and clustering problems.
- 3. To evaluate and interpret the results of algorithm.

Learning Outcomes

- 1. Perform end-to-end process of investigating data through a machine learning lens.
- 2. Extract and identify best features of data.
- 3. Evaluate the performance of machine learning algorithms.

Unit	Topics	Lectures
Unit I	Data Pre-processing: What is Dataset, different sources of repository/different format, data pipeline and flow, web scraping and ethics, understandability of data, training and testing data, Instance-base and model base learning, ML vs traditional programming, MLDLC, challenges in ML	10
	Feature Engineering: Feature transformation, feature construction, feature scaling(Standardization & Normalization), feature extraction(PCA,LDA),function and power transformation.	

Unit II	Supervised Learning: Regression: what is regression, linear model and linear seperabality, types of LR, bestfit-line, relationship, cost function, accuracy metrics, where LR	10			
	fails, optimize using gradient decent, Polynomial regression.				
	Regularization : Overfitting vs underfitting. Ridge, lasso and ElasticNet				
	regression.				
	Classification: what is classification, logistic regression, SVM, KNN, Decision				
	tree, Random forest, Naive bayes, data imbalance, classification metrics				
	and precision and recall. Repressor vs classifier.				
	Ensemble Learning: Introduction to ensemble learning, Voting ensembles,				
	Bagging techniques, Hyperparamter tuning, AdaBost Algorithm, stacking				
	and blending, bagging vs boosting.				
Unit III	Unsupervised Learning:	10			
	Clustering: whyclustering, partition, Hierarchical, Density and grid based				
	clustering application of unsupervised learning.				
	Association Dula Learning Market Deduct analysis summer as of ideas and				
	Association Rule Learning: Market Basket analysis, support, confidence and				
	lift, Apriori algorithm, F-P growth.				
	Dimensionality Reduction: curse of dimensionality Principal Component				
	Analysis t-sne auto-encoders				
Lipit IV	Reinforcement Learning: Value functions, Pollman's equation, value	10			
Onitiv	iteration, policy iteration, Markov Decision processes/MDPs) O-Learning	10			
	Time series analysis(TSA): what is TSA and it significance, component of				
	time series, limitation of TSA, station and non-station data and conversion,				
	auto regressive model(AR), ARIMA, SARIMA model, time series model				
	selection.				
Referen	ces				
1.	"An Introduction to Statistical Learning With Application in R", By Gareth James	, Daniela			
	Witten, Trevor Hastie, Robert Tibshirani, Springer Texts in Statistics.				
2.	"Machine Learning", Mitchell Tom, McGraw Hill,1997.				
3.	8. "Pattern classification", 2nd edition, Richard O. Duda, Peter E. Hart, David G. Stork. Wiley,				
	New York, 2001.				
4.	"Machine Learning: A Probabilistic Perspective", Kevin P. Murphy, MIT Press, 20)12 5.			
	"Practical Data Science", Andreas Francois Vermeulen, APress, 2018				

6. "Principles of Data Science", Sinan Ozdemir, Packt, 2016.

Course Code	Course Name	Group	Teaching Scheme		Credits
			(Hrs/Week)		
			Lectures	Practical	
RJSPGITDSAI202	Big Data Technology	СС	4	-	4

Course Objectives

- 1. To provide knowledge of basic and advanced methods of big data technology and tools.
- 2. To provide the knowledge of MapReduce, Hadoop and its ecosystem.
- 3. To provide hands-on training that enable effective participation in big data projects.

Learning Outcomes

- 1. Apply Hadoop ecosystem components.
- 2. Build and maintain reliable, scalable and distributed systems with Apache Hadoop.
- 3. Apply big data concepts to various use cases.
- 4. Develop application using Zookeeper and Monitoring the cluster.

Unit	Topics	Lectures
Unit I	 INTRODUCTION TO BIG DATA Introduction: Distributed file system, Big Data and its importance, Four Vs, Drivers for Big data, Big data analytics, Big data applications. Algorithms using map reduce, Matrix-Vector Multiplication by Map Reduce. INTRODUCTION HADOOP Big Data: Apache Hadoop & Hadoop Ecosystem, Moving Data in and out of Hadoop, Understanding inputs and outputs of MapReduce, Data Serialization. 	10
Unit II	HADOOP ARCHITECTURE Hadoop Architecture, Hadoop Storage: HDFS, Common Hadoop Shell commands, Anatomy of File Write and Read., Name Node, Secondary Name Node, and Data Node, Hadoop MapReduce paradigm, Map and Reduce tasks, Job, Task trackers, Cluster Setup, SSH & Hadoop Configuration, HDFS Administering, Monitoring & Maintenance.	10
Unit III	HADOOP ECOSYSTEM AND YARNHadoop ecosystem components: Schedulers, Fair and Capacity, Hadoop 2.0New Features Name Node High Availability, HDFS Federation, MRv2, YARN,Running MRv1 in YARN.	10
Unit IV	 Hive and HiveQL, HBase Hive Architecture and Installation, Comparison with Traditional Database. HiveQL Querying Data, Sorting and Aggregating, Map Reduce Scripts, Joins & Subqueries. HBase concepts Advanced Usage, Schema Design, Advance Indexing, PIG, Zookeeper, how it helps in monitoring a cluster, HBase uses Zookeeper and how to Build Applications with Zookeeper. 	10
Referen 1. 2. 3.	ces "Professional Hadoop Solutions", Boris lublinsky, Kevin t. Smith, Alexey Yakubov ISBN: 9788126551071, 2015. "Understanding Big data", Chris Eaton, Dirk deroos et al, McGraw Hill, 2012. "HADOOP: The definitive Guide", Tom White, O Reilly 2012. 6 IT2015 SRM(E&T) "Big Data Analytics with B and Hadoon", Vignesh Prajapati, Backet Bubliching 20	vich, Wiley,

Hindi Vidya Prachar Samiti's, Ramniranjan Jhunjhunwala College of Arts, Science & Commerce (Autonomous) M.Sc. Data Science & Artificial Intelligence Syllabus

- 5. "Oracle Big Data Handbook", Tom Plunkett, Brian Macdonald et al, Oracle Press, 2014.
- 6. "Big Data and Business analytics", Jy Liebowitz, CRC press, 2013.
- 7. http://www.bigdatauniversity.com

Course Code	Course Name	Group	Teaching (Hrs/Wee	Scheme k)	Credits
			Lectures	Practical	
RJSPGITDSAI203	Soft Computing	СС	4	-	4

Course Objectives

- 1. To Provide the knowledge of soft computing concepts like fuzzy logic, neural networks and genetic algorithm, where Artificial Intelligence is mother branch of all.
- 2. To learn effective techniques and their roles in building intelligent systems.
- 3. To learn how to use neural networks for classification and regression problems.

Learning Outcomes

- 1. Identify and describe soft computing techniques and their roles in building intelligent machines.
- 2. Select soft computing methodology to solve a particular problem.
- 3. Apply fuzzy logic and reasoning to solve engineering problems.
- 4. Apply genetic algorithms to combinatorial optimization problems.
- 5. Apply neural networks for classification and regression problems.
- 6. Evaluate and compare solutions by various soft computing approaches for a given problem.

Unit	Topics	Lectures
Unit I	Introduction Introduction of soft computing, soft computing vs. hard computing, various types of soft computing techniques, Fuzzy Computing, Neural Computing, Genetic Algorithms, Associative Memory, Adaptive Resonance Theory, Classification, Clustering, Bayesian Networks, Probabilistic reasoning, applications of soft computing.	10
Unit II	 Artificial Neural Network Fundamental concept, Evolution of Neural Networks, Basic Models, McCullohPitts Neuron, Linear Separability, Hebb Network. Supervised Learning Network Perceptron Networks, Adaptive Linear Neuron, Multiple Adaptive Linear Neurons, Backpropagation Network, Radial Basis Function, Time Delay Network, Functional Link Networks, Tree Neural Network. Associative Memory Networks Training algorithm for pattern Association, Autoassociative memory network, hetroassociative memory network, bi-directional associative memory, Hopfield networks, iterative autoassociative memory networks, temporal associative memory networks. 	10
Unit III	Unsupervised Learning Networks	10

	 Fixed weight competitive nets, Kohonen self-organizing feature maps, learning vectors quantization, counter propagation networks, adaptive resonance theory networks. Special Networks Simulated annealing, Boltzmann machine, Gaussian Machine, Cauchy Machine, Probabilistic neural net, cascade correlation network, cognition network, neo-cognition network, cellular neural network, optical neural network. Third Generation Neural Networks Spiking Neural networks, convolutional neural networks, deep learning neural networks, extreme learning machine model. 					
Unit IV	 Introduction to Fuzzy Logic, Classical Sets and Fuzzy sets Classical sets, Fuzzy sets. Classical Relations and Fuzzy Relations Cartesian Product of relation, classical relation, fuzzy relations, tolerance and equivalence relations, non-iterative fuzzy sets. Genetic Algorithm Biological Background, Traditional optimization and search techniques, genetic algorithm and search space, genetic algorithm vs. traditional algorithms, basic terminologies, simple genetic algorithm, general genetic algorithm, operators in genetic algorithm, stopping condition for genetic algorithm flow, constraints in genetic algorithm, problem solving using genetic algorithm. 	10				
Reference 1. "/	References 1. "Artificial Intelligence and Soft Computing", Anandita Battacharya Das, SPD 3 rd , 2018.					

- 2. "Principles of Soft computing", S.N.Sivanandan, S.N.Deepa, Wiley 3rd, 2019.
- 3. "Neuro-Fuzzy and Soft Computing", J.S.R.Jang, C.T.Sun and E.Mizutani, Prentice Hall of India, 2004.
- 4. "Neural Networks, Fuzzy Logic and Genetic Algorithms: Synthesis & Applications", S.Rajasekaran, G. A. Vijayalakshami , Prentice Hall of India. 2004.
- 5. "Fuzzy Logic with Engineering Applications", Timothy J.Ross, McGraw-Hill, 1997.

PG Labs

Course Code	Course Name	Group	Teaching (Hrs/Wee	Scheme :k)	Credits
RJSPGITDSAI2L1	PG Lab – III Machine Learning	PGL	-	2	2
Practical List:					
 All Feature Simple ar 	re Engineering Operations. nd Multiple linear regression.				

- 3. Logistics regression, SVM and KNN
- 4. Regularization with Penalty
- 5. Ensemble learning
- 6. Clustering using K-means and DBScan.
- 7. Dimensionality reduction techniques
- 8. Market Basket Analysis using Apriori Algorithm
- 9. Time Series Model
- 10. Q Learning

Course Code	Course Name	Group	Teaching Scheme (Hrs/Week)		Credits
RJSPGITDSAI2L2	PG Lab – IV	PGL	-	2	2
	Big Data Technology				

Practical List:

- 1. Setting Single node Hadoop cluster using Ubuntu and HDFS.
- 2. Configuration of Multiple node Hadoop cluster.
- 3. Fie management in HDFS.
- 4. Creating application using MapReduce.
- 5. Word Count application using Hadoop Eclipse.
- 6. Handling unstructured data using NoSQL.
- 7. Querying, Sorting and Aggregating data using HiveQL.
- 8. Map Reduce Scripts, Joins & Subqueries using HiveQL.
- 9. Schema design using HBase.
- 10. Using Mahout Library for big data analysis.
- 11. Building application with Zookeeper.

RJSPGITDSA1213 PG Lab - III Soft Computing PG L - 2 2 Practical List: Implement the following: .	Course Code	Course Name	Group	Teaching (Hrs/Wee	Scheme k)	Credits	
Soft Computing Implement the following: 1. Design a simple linear neural network model. Calculate the output of neural net using both binary and bipolar sigmoidal function. Implement the following: Implement the following: 1. Generate AND/NOT function using McCulloch-Pitts neural net. Generate XOR function using McCulloch-Pitts neural net. 1. Write a program to implement Hebb's rule. Write a program to implement of delta rule. 1. Write a program for Back Propagation Algorithm Write a program for Back Propagation algorithm. 1. Write a program for Pror Backpropagation algorithm. Implement the Following 1. Write a program for Radial Basis function. Implement the Following 1. Write a program for Radial Basis function. Implement the Following 1. Kohonen Self organizing map. Adaptive resonance theory. Implement the Following Write a program for Linear separation. Implement the Following Merite a program for Linear separation. Implement the Following Merite a program for Linear separation. Implement the Following Following 1. Write a program for Linear separation. Implement the Following 2. Membership and Identity Operators in, not in, is, is not. Implement the Following 3. Find ratios using fuzzy logic <t< th=""><th>RJSPGITDSAI2L3</th><th>PG Lab – III</th><th>PGL</th><th>-</th><th>2</th><th>2</th></t<>	RJSPGITDSAI2L3	PG Lab – III	PGL	-	2	2	
 Practical List: Implement the following: Design a simple linear neural network model. Calculate the output of neural net using both binary and bipolar sigmoidal function. Implement the following: Generate AND/NOT function using McCulloch-Pitts neural net. Generate XOR function using McCulloch-Pitts neural net. Generate AND in the following Write a program to implement Hebb's rule. Write a program to implement of delta rule. Implement the Following Write a program for Back Propagation Algorithm Write a program for Back Propagation algorithm. Implement the Following Write a program for Hopfield Network. Write a program for Radial Basis function. Implement the Following Kohonen Self organizing map. Adaptive resonance theory. Implement the Following Write a program for Linear separation. Implement the Following Write a program for Linear separation. Implement the Following Wembership and Identity Operators in, not in, is, is not. Implement the Following Find ratios using fuzzy logic. Implement the Following Implement the Following Find ratios using fuzzy logic. Implement the Following Implement the Following Implement the Following Find ratios using fuzzy logic. Implement the Following Find ratios using fuzzy logic. Implement the Following Implement the Following Implement the Following Implement the Following Implement the Following Create two classes: City and Fitnes		Soft Computing					
 Implement the following: Design a simple linear neural network model. Calculate the output of neural net using both binary and bipolar sigmoidal function. Implement the following: Generate AND/NOT function using McCulloch-Pitts neural net. Generate XOR function using McCulloch- Pitts neural net. Implement the Following Write a program to implement Hebb's rule. Write a program to implement of delta rule. Implement the Following Write a program for Back Propagation Algorithm Write a program for error Backpropagation algorithm. Implement the Following Write a program for Hopfield Network. Write a program for Radial Basis function. Implement the Following Kohonen Self organizing map. Adaptive resonance theory. Implement the Following Write a program for Linear separation. Implement the Following Write a program for Jinear separation. Implement the Following Write a program for Linear separation. Implement the Following Wembership and Identity Operators in, not in, is, is not. Implement the Following Find ratios using fuzzy logic. Implement the Following Implement the Following Find ratios using fuzzy logic. Implement the Following Implement the Following Implement the Following Find ratios using fuzzy logic. Implement the Following Implement the Following Implement the Following Create two classes: City and Fitness using Generic algorithm 	Practical List:						
 Design a simple linear neural network model. Calculate the output of neural net using both binary and bipolar sigmoidal function. Implement the following: Generate AND/NOT function using McCulloch-Pitts neural net. Generate XOR function using McCulloch- Pitts neural net. Implement the Following Write a program to implement Hebb's rule. Write a program to implement of delta rule. Implement the Following Write a program for Back Propagation Algorithm Write a program for Pack Propagation algorithm. Write a program for Radial Basis function. Implement the Following Write a program for Radial Basis function. Implement the Following Kohonen Self organizing map. Adaptive resonance theory. Implement the Following Write a program for Linear separation. Implement the Following Write a program for Linear separation. Implement the Following Membership and Identity Operators in, not in, is, is not. Implement the Following Find ratios using fuzzy logic Senot. Implement the Following Implement the Following Implement the Following Find ratios using fuzzy logic. Implement the Following Find ratios using fuzzy logic. Implement the Following Implement the Following	Implement th	e following:					
 model. Calculate the output of neural net using both binary and bipolar sigmoidal function. Implement the following: Generate AND/NOT function using McCulloch-Pitts neural net. Generate XOR function using McCulloch- Pitts neural net. Implement the Following Write a program to implement Hebb's rule. Write a program to implement of delta rule. Implement the Following Write a program for Back Propagation Algorithm Write a program for error Backpropagation algorithm. Implement the Following Write a program for reror Backpropagation algorithm. Implement the Following Write a program for Hopfield Network. Write a program for Radial Basis function. Implement the Following Kohonen Self organizing map. Adaptive resonance theory. Implement the Following Write a program for Linear separation. Implement the Following Write a program for Linear separation. Implement the Following Write a program for Linear separation. Implement the Following Wembership and Identity Operators in, not in, is, is not. Implement the Following Find ratios using fuzzy logic. Implement the Following Implement the Following Implement the Following Find ratios using fuzzy logic. Implement the Following Implement the Following 	1. Design a	1. Design a simple linear neural network					
 Calculate the output of neural net using both binary and bipolar sigmoidal function. Implement the following: Generate AND/NOT function using McCulloch-Pitts neural net. Generate XOR function using McCulloch- Pitts neural net. Implement the Following Write a program to implement Hebb's rule. Write a program to implement of delta rule. Implement the Following Write a program for Back Propagation Algorithm Write a program for error Backpropagation algorithm. Implement the Following Write a program for Hopfield Network. Write a program for Hopfield Network. Write a program for Radial Basis function. Implement the Following Kohonen Self organizing map. Adaptive resonance theory. Implement the Following Write a program for Junear separation. Implement the Following Write a program for Junear separation. Implement the Following Membership and Identity Operators in, not in, is, is not. Implement the Following Find ratios using fuzzy logic. Solve Tipping problem using fuzzy logic. Implement the Following Implement the Following Find ratios using fuzzy logic. Implement the Following Implement the Following Find ratios using fuzzy logic. Implement the Following Implement the Following Solve Tipping problem using fuzzy logic. Implement the Following Implement the Following Implement the Following Implement the Followin	model.						
both binary and bipolar sigmoidal function. Implement the following: 1. Generate AND/NOT function using McCulloch-Pitts neural net. 2. Generate XOR function using McCulloch- Pitts neural net. Implement the Following 1. Write a program to implement Hebb's rule. 2. Write a program to implement of delta rule. Implement the Following 1. Write a program for Back Propagation Algorithm 2. Write a program for error Backpropagation algorithm. Implement the Following 1. Write a program for error Backpropagation algorithm. Implement the Following 1. Write a program for Radial Basis function. Implement the Following 1. Kohonen Self organizing map. 2. Adaptive resonance theory. Implement the Following 1. Write a program for Linear separation. Implement the Following 2. Membership and Identity Operators in, not in, is, is not. Implement the Following 3. Find ratios using fuzzy logic 4. Solve Tipping problem using fuzzy logic. Implement the Following 1. Implement the Following 3. Find ratios using fuzzy logic. Implement the Following 3. Implement the Following 3. Find ratios using fuzzy logic. 4. Solve Tipping problem using fuzzy logic. Implement the Following 3. Implement the Following 4. Implement the Following 5. Genetic algorithm 5. Create two classes: City and Fitness using Genetic algorithm	2. Calculate	the output of neural net using					
 Implement the following: Generate XOR function using McCulloch-Pitts neural net. Generate XOR function using McCulloch-Pitts neural net. Implement the Following Write a program to implement Hebb's rule. Write a program to implement of delta rule. Implement the Following Write a program for Back Propagation Algorithm Write a program for error Backpropagation algorithm. Implement the Following Write a program for error Backpropagation algorithm. Write a program for Hopfield Network. Write a program for Radial Basis function. Implement the Following Kohonen Self organizing map. Adaptive resonance theory. Implement the Following Write a program for Linear separation. Implement the Following Write a program for Jinear separation. Implement the Following Membership and Identity Operators in, not in, is, is not. Implement the Following Seried ratios using fuzzy logic. Implement the Following Find ratios using fuzzy logic. Implement the Following Implement the Following Genericaleorithm 	both bina	ary and bipolar sigmoidal function.					
 Generate AND/NOT function using McCulloch-Pitts neural net. Generate XOR function using McCulloch- Pitts neural net. Implement the Following Write a program to implement Hebb's rule. Write a program to implement of delta rule. Implement the Following Write a program for Back Propagation Algorithm Write a program for error Backpropagation algorithm. Implement the Following Write a program for rror Backpropagation algorithm. Write a program for Hopfield Network. Write a program for Radial Basis function. Implement the Following Kohonen Self organizing map. Adaptive resonance theory. Implement the Following Write a program for Linear separation. Implement the Following Membership and Identity Operators in, not in, is, is not. Implement the Following Find ratios using fuzzy logic. Solve Tipping problem using fuzzy logic. Implement the Following Implement the Following Solve Tipping problem using fuzzy logic. Implement the Following Implement the Following 	Implement th	e following:					
 McCulloch-Pitts neural net. Generate XOR function using McCulloch- Pitts neural net. Implement the Following Write a program to implement Hebb's rule. Write a program to implement of delta rule. Implement the Following Write a program for Back Propagation Algorithm Write a program for error Backpropagation algorithm. Implement the Following Write a program for error Backpropagation algorithm. Implement the Following Write a program for Hopfield Network. Write a program for Radial Basis function. Implement the Following Kohonen Self organizing map. Adaptive resonance theory. Implement the Following Write a program for Linear separation. Implement the Following Write a program for Linear separation. Implement the Following Solve Tipping problem using fuzzy logic. Implement the Following Implement the Following 	1. Generate	AND/NOT function using					
 Generate XOR function using McCulloch- Pitts neural net. Implement the Following Write a program to implement Hebb's rule. Write a program to implement of delta rule. Implement the Following Write a program for Back Propagation Algorithm Write a program for error Backpropagation algorithm. Implement the Following Write a program for Hopfield Network. Write a program for Radial Basis function. Implement the Following Kohonen Self organizing map. Adaptive resonance theory. Implement the Following Write a program for Linear separation. Implement the Following Write a program for Junear separation. Implement the Following Solve Tipping problem using fuzzy logic. Solve Tipping problem using fuzzy logic. Implement the Following Implement the Following Find ratios using fuzzy logic. Implement the Following Implement the Following Find ratios using fuzzy logic. Implement the Following Find ratios using fuzzy logic. Implement the Following Find ratios using fuzzy logic. Implement the Following Create two classes: City and Fitness using Genetic algorithm 	McCulloc	h-Pitts neural net.					
 Pitts neural net. Implement the Following Write a program to implement Hebb's rule. Write a program to implement of delta rule. Implement the Following Write a program for Back Propagation Algorithm Write a program for error Backpropagation algorithm. Implement the Following Write a program for error Backpropagation algorithm. Implement the Following Write a program for Adial Basis function. Implement the Following Kohonen Self organizing map. Adaptive resonance theory. Implement the Following Write a program for Linear separation. Implement the Following Membership and Identity Operators in, not in, is, is not. Implement the Following Find ratios using fuzzy logic. Implement the Following Implement the Following Implement the Following Create two classes: City and Fitness using Genetic algorithm 	2. Generate	XOR function using McCulloch-					
 Implement the Following Write a program to implement Hebb's rule. Write a program to implement of delta rule. Implement the Following Write a program for Back Propagation Algorithm Write a program for error Backpropagation algorithm. Implement the Following Write a program for Hopfield Network. Write a program for Radial Basis function. Implement the Following Kohonen Self organizing map. Adaptive resonance theory. Implement the Following Write a program for Linear separation. Implement the Following Membership and Identity Operators in, not in, is, is not. Implement the Following Find ratios using fuzzy logic. Implement the Following Implement the Following Find ratios using fuzzy logic. Implement the Following Create two classes: City and Fitness using Genetic algorithm 	Pitts neu	ral net.					
 Write a program to implement Hebb's rule. Write a program to implement of delta rule. Implement the Following Write a program for Back Propagation Algorithm Write a program for error Backpropagation algorithm. Implement the Following Write a program for Hopfield Network. Write a program for Radial Basis function. Implement the Following Kohonen Self organizing map. Adaptive resonance theory. Implement the Following Write a program for Linear separation. Implement the Following Membership and Identity Operators in, not in, is, is not. Implement the Following Find ratios using fuzzy logic. Implement the Following Implement the Following Find ratios using fuzzy logic. Implement the Following Implement the Following Genetic algorithm 	Implement th	e Following					
 Write a program to implement of delta rule. Implement the Following Write a program for Back Propagation Algorithm Write a program for error Backpropagation algorithm. Implement the Following Write a program for Hopfield Network. Write a program for Radial Basis function. Implement the Following Kohonen Self organizing map. Adaptive resonance theory. Implement the Following Write a program for Linear separation. Implement the Following Membership and Identity Operators in, not in, is, is not. Implement the Following Find ratios using fuzzy logic. Solve Tipping problem using fuzzy logic. Implement the Following Implement the Following Solve Tipping problem using fuzzy logic. Implement the Following Create two classes: City and Fitness using Genetic algorithm 	1. Write a p	rogram to implement Hebb's rule.					
 Implement the Following Write a program for Back Propagation Algorithm Write a program for error Backpropagation algorithm. Implement the Following Write a program for Hopfield Network. Write a program for Radial Basis function. Implement the Following Kohonen Self organizing map. Adaptive resonance theory. Implement the Following Write a program for Linear separation. Implement the Following Membership and Identity Operators in, not in, is, is not. Implement the Following Find ratios using fuzzy logic Solve Tipping problem using fuzzy logic. Implement the Following Implement the Following Create two classes: City and Fitness using Genetic algorithm 	2. Write a p	rogram to implement of delta rule.					
 Write a program for Back Propagation Algorithm Write a program for error Backpropagation algorithm. Implement the Following Write a program for Hopfield Network. Write a program for Radial Basis function. Implement the Following Kohonen Self organizing map. Adaptive resonance theory. Implement the Following Write a program for Linear separation. Implement the Following Write a program for Linear separation. Implement the Following Membership and Identity Operators in, not in, is, is not. Implement the Following Find ratios using fuzzy logic Solve Tipping problem using fuzzy logic. Implement the Following Implement the Following Genetic algorithm 	Implement th	ne Following					
 Algorithm Write a program for error Backpropagation algorithm. Implement the Following Write a program for Hopfield Network. Write a program for Radial Basis function. Implement the Following Kohonen Self organizing map. Adaptive resonance theory. Implement the Following Write a program for Linear separation. Implement the Following Membership and Identity Operators in, not in, is, is not. Implement the Following Find ratios using fuzzy logic Solve Tipping problem using fuzzy logic. Implement the Following Implement the Following Find ratios using fuzzy logic. Implement the Following Create two classes: City and Fitness using Genetic algorithm 	1. Write a p	program for Back Propagation					
 Write a program for error Backpropagation algorithm. Implement the Following Write a program for Hopfield Network. Write a program for Radial Basis function. Implement the Following Kohonen Self organizing map. Adaptive resonance theory. Implement the Following Write a program for Linear separation. Implement the Following Write a program for Linear separation. Implement the Following Membership and Identity Operators in, not in, is, is not. Implement the Following Find ratios using fuzzy logic Solve Tipping problem using fuzzy logic. Implement the Following Implement the Following Solve Tipping problem using fuzzy logic. Implement the Following Implement the Following Solve Tipping problem using fuzzy logic. 	Algorithr	n					
 algorithm. Implement the Following Write a program for Hopfield Network. Write a program for Radial Basis function. Implement the Following Kohonen Self organizing map. Adaptive resonance theory. Implement the Following Write a program for Linear separation. Implement the Following Write a program for Linear separation. Implement the Following Membership and Identity Operators in, not in, is, is not. Implement the Following Find ratios using fuzzy logic. Implement the Following Implement the Following Find ratios using fuzzy logic. Implement the Following Implement the Following 	2. Write a p	program for error Backpropagation					
 Implement the Following Write a program for Hopfield Network. Write a program for Radial Basis function. Implement the Following Kohonen Self organizing map. Adaptive resonance theory. Implement the Following Write a program for Linear separation. Implement the Following Membership and Identity Operators in, not in, is, is not. Implement the Following Find ratios using fuzzy logic. Solve Tipping problem using fuzzy logic. Implement the Following Implement the Following Solve Tipping problem using fuzzy logic. Implement the Following Implement the Following 	algorithr	n.					
 Write a program for Hopfield Network. Write a program for Radial Basis function. Implement the Following Kohonen Self organizing map. Adaptive resonance theory. Implement the Following Write a program for Linear separation. Implement the Following Membership and Identity Operators in, not in, is, is not. Implement the Following Find ratios using fuzzy logic Solve Tipping problem using fuzzy logic. Implement the Following Implement the Following Solve Tipping problem using fuzzy logic. Implement the Following Implement the Following Solve Tipping problem using fuzzy logic. 	Implement th	e Following					
 Write a program for Radial Basis function. Implement the Following Kohonen Self organizing map. Adaptive resonance theory. Implement the Following Write a program for Linear separation. Implement the Following Write a program for Linear separation. Implement the Following Write a program for Linear separation. Implement the Following Membership and Identity Operators in, not in, is, is not. Implement the Following Find ratios using fuzzy logic Solve Tipping problem using fuzzy logic. Implement the Following Implement the Following Implement the Following Implement the Following Implement the Following Create two classes: City and Fitness using Genetic algorithm 	1. Write a p	rogram for Hopfield Network.					
 Implement the Following 1. Kohonen Self organizing map. 2. Adaptive resonance theory. Implement the Following 1. Write a program for Linear separation. Implement the Following 2. Membership and Identity Operators in, not in, is, is not. Implement the Following 3. Find ratios using fuzzy logic 4. Solve Tipping problem using fuzzy logic. Implement the Following 1. Implement the Following 2. Implement the Following 3. Find ratios using fuzzy logic. Implement the Following 3. Find ratios using fuzzy logic. Implement the Following 3. Create two classes: City and Fitness using Genetic algorithm 	2. Write a p	rogram for Radial Basis function.					
 Kohonen Self organizing map. Adaptive resonance theory. Implement the Following Write a program for Linear separation. Implement the Following Membership and Identity Operators in, not in, is, is not. Implement the Following Find ratios using fuzzy logic Solve Tipping problem using fuzzy logic. Implement the Following Implement the Following Solve Tipping problem using fuzzy logic. Implement the Following Implement the Following Solve Tipping problem using fuzzy logic. 	Implement th	e Following					
 Adaptive resonance theory. Implement the Following Write a program for Linear separation. Implement the Following Membership and Identity Operators in, not in, is, is not. Implement the Following Find ratios using fuzzy logic Solve Tipping problem using fuzzy logic. Implement the Following Implement the Following fuzzy logic. Find ratios using fuzzy logic. Implement the Following Find ratios using fuzzy logic. Solve Tipping problem using fuzzy logic. Implement the Following Implement the Following Implement the Following Genetic algorithm 	1. Kohonen	Self organizing map.					
 Implement the Following 1. Write a program for Linear separation. Implement the Following 2. Membership and Identity Operators in, not in, is, is not. Implement the Following 3. Find ratios using fuzzy logic 4. Solve Tipping problem using fuzzy logic. Implement the Following 1. Implementation of Simple genetic algorithm 2. Create two classes: City and Fitness using Genetic algorithm 	2. Adaptive	resonance theory.					
 Write a program for Linear separation. Implement the Following Membership and Identity Operators in, not in, is, is not. Implement the Following Find ratios using fuzzy logic Solve Tipping problem using fuzzy logic. Implement the Following Implement the Following Solve Tipping problem using fuzzy logic. Implement the Following Implement the Following Solve Tipping problem using fuzzy logic. Implement the Following Implement the Following Solve Tipping problem using fuzzy logic. Implement the Following Implement the Following Screate two classes: City and Fitness using Genetic algorithm Genetic algorithm Screate two classes: City and Fitness using Scr	Implement th	e Following					
 Implement the Following 2. Membership and Identity Operators in, not in, is, is not. Implement the Following 3. Find ratios using fuzzy logic 4. Solve Tipping problem using fuzzy logic. Implement the Following 1. Implementation of Simple genetic algorithm 2. Create two classes: City and Fitness using Genetic algorithm 	1. Write a p	rogram for Linear separation.					
 Membership and Identity Operators in, not in, is, is not. Implement the Following Find ratios using fuzzy logic Solve Tipping problem using fuzzy logic. Implement the Following Implementation of Simple genetic algorithm Create two classes: City and Fitness using Genetic algorithm 	Implement th	e Following					
 in, is, is not. Implement the Following 3. Find ratios using fuzzy logic 4. Solve Tipping problem using fuzzy logic. Implement the Following 1. Implementation of Simple genetic algorithm 2. Create two classes: City and Fitness using Genetic algorithm 	2. Members	ship and Identity Operators in, not					
 Implement the Following 3. Find ratios using fuzzy logic 4. Solve Tipping problem using fuzzy logic. Implement the Following 1. Implementation of Simple genetic algorithm 2. Create two classes: City and Fitness using Genetic algorithm 	in, is, is n	ot.					
 Find ratios using fuzzy logic Solve Tipping problem using fuzzy logic. Implement the Following Implementation of Simple genetic algorithm Create two classes: City and Fitness using Genetic algorithm 	Implement th	e Following					
 Solve Tipping problem using fuzzy logic. Implement the Following Implementation of Simple genetic algorithm Create two classes: City and Fitness using Genetic algorithm 	3. Find ratio	os using fuzzy logic					
 Implement the Following Implementation of Simple genetic algorithm Create two classes: City and Fitness using Genetic algorithm 	4. Solve Tip	ping problem using fuzzy logic.					
 Implementation of Simple genetic algorithm Create two classes: City and Fitness using Genetic algorithm 	Implement th	e Following					
2. Create two classes: City and Fitness using Genetic algorithm	1. Impleme	ntation of Simple genetic algorithm					
Genetic algorithm	2. Create tw	vo classes: City and Fitness using					
	Genetic a	algorithm					

Professional Electives

Course Code	Course Name	Group	Teaching Scheme (Hrs/Week)		Credits
			Lectures	Practical	
RJSPGITDSAI2P2	Data Science in Cloud Computing	PE	3	-	3

Course Objectives

- 1. To study the fundamental aspects of cloud environment, deployment models and different services offered by cloud.
- 2. To study various techniques of virtualization.
- 3. To Study security issues in cloud computing.

Learning Outcomes

Upon completion of this course, the student should be able to 1.

Design of computer clusters for scalable parallel computing.

- 2. Understand virtualization of clusters and Data centers along with various cloud computing and Service models-PaaS, SaaS, IaaS.
- 3. Apply various aspects of security to cloud clusters.

Unit	Topics	Lectures
Unit I	Cloud Computing Basics Cloud Enabling Technologies, Characteristics of Cloud Computing, Benefits of Cloud Computing, Cloud Service Models, Cloud Deployment models, Cloud computing Infrastructure, Cloud Challenges.	10
Unit II	Virtualization Fundamentals Virtualization-Enabling technology for cloud computing, Types of Virtualization, Server Virtualization, Desktop Virtualization, Memory Virtualization, Application and Storage Virtualization, Tools and Products available for Virtualization.	10
Unit III	SaaS, PaaS, Iaas And Cloud Storage Getting started with SaaS, Understanding the multitenant nature of SaaS solutions, Understanding Open SaaS Solutions, Understanding Service Oriented Architecture, PaaS, Benefits and Limitations of PaaS. Understanding IaaS, improving performance through Load balancing, Server Types within IaaS solutions, utilizing cloud based NAS devices. Understanding Cloud based data storage, Cloud based backup devices, Cloud based database solutions, Cloud based block storage.	10

Unit IV	Cloud Application Development and Security Management & Privacy in Cloud Client Server Distributed Architecture for cloud – Traditional apps vs. Cloud AppsClient-side programming model: Web clients. Mobile clients, Server-Side Programming Technologies AJAX, JSON, Web Services (RPC, REST), MVC Design Patterns for Cloud Application Development. Security Management in the Cloud Security Management Standards, Security Management in the Cloud, Availability	10
	Management, laaS Availability Management, Access Control, Security Vulnerability, Patch, and Configuration Management. Privacy in Cloud	
	Privacy, Data Life Cycle, Key Privacy Concems in the Cloud. Protecting Privacy, Privacy Risk Management and Compliance in Relatior to Cloud Computing.	
Reference	25	

"Cloud Computing: A Practical Approach", Anthony T. Velte, Toby J. Velte, Robert Elsenpeter, Tata McGraw Hill Edition, Fourth Reprint, 2010.

- 2. "Cloud Computing: SaaS, PaaS, IaaS, Virtualization, Business Models, Mobile, Security and more", Kris Jamsa, Jones & Bartlett Learning Company LLC, 2013.
- 3. "Cloud Security: A Comprehensive Guide to Secure Cloud Computing", Ronald L. Krutz, Russell vines, Wiley Publishing Inc., 2010.
- 4. "Cloud Security and Privacy an Enterprise perspective on Risk and Compliance", Tim Mather, Subra Kumaraswamy, and Shahed Latif, O'Reilly.
- 5. "Security and privacy in Internet of Things Models Algorithms and Implementations", Fe Hu, CRC Press.
- 6. "Cloud Security", Ronald Krutz and Russell Dean Vines, Wiley, India.

Course Code	Course Name	Group	Teaching Scheme (Hrs/Week)		Credits
			Lectures	Practical	
RJSPGITDSAI2P2	Image Processing & Computer Vision	PE	3	-	3

Course Objectives

- 1. To study the image fundamentals and mathematical transforms necessary for image processing.
- 2. To study the image enhancement, restoration and compression techniques.
- 3. To study computer vision technique.

Learning Outcomes

- 1. Analyse images in the frequency domain using various transforms.
- 2. Evaluate the techniques for computer vision.
- 3. Categorize various OpenCv techniques.
- 4. Interpret computer vision standards.
- 5. Interpret image segmentation and representation techniques.

Unit	Topics	Lectures
Unit I	Introduction to Image-processing System : Introduction, Image Sampling, Quantization, Resolution, Human Visual Systems, Elements of an Image- processing System, Applications of Digital Image Processing	10
	2D Correlation Image Transforms: Need for transform, image transforms, Fourier transform, 2D Discrete Fourier Transform, Properties of 2D DFT, Importance of Phase, Walsh transform, Hadamard transform, Haar transform, Slant transform, Discrete Cosine transform, KL transform	
Unit II	Image Enhancement : Image Enhancement in spatial domain, Enhancement trough Point operations, Histogram manipulation, Linear and nonlinear Gray Level Transformation, local or neighborhood operation, Median Filter, Spatial domain High pass filtering, Bit-plane slicing, Image Enhancement in frequency domain, Homomorphic filter, Zooming operation,	10
	Colour Image processing : Colour images, Colour Model, Colour image quantization, Smoothing and sharpening, Image segmentation bases on colour, Noise in colour images	
Unit III	 Morphological Image Processing: Introduction, Erosion and Dilation, Opening and closing, History, Miss transformation, Basic morphological algorithms, Gray scale morphology. Image Segmentation: Image segmentation techniques, Region approach, Clustering techniques, Thresholding, Edge-based segmentation, Edge detection, Edge Linking, Hough Transform 	10
	Image Compression: Need for image compression, Redundancy in images, Image-compression scheme, Fundamentals of Information Theory, Run-length coding, Shannon-Fano coding, Huffman Coding, Arithmetic Coding, Transform- based compression, Image-compression standard.	
Unit IV	Introduction to computer vision: Image processing vs computer vision, Overview of problems of machine vision and pattern classification, Image formation and processing, Feature extraction from images, Biological object recognition, Bayesian modeling and inference, Object detection and recognition, Morphable models, object tracking and detection, Genture recognition. Image formation:radiometry, shape from shading, image formation, background modeling and motion estimation, sementic segmentation	10
	Deep learning for computer vision: Convolutional neural network, Recurrent neural network and image caption generator, deep generative model, recent trends.	
Reference	25	
1) D P'	igital Image Processing, S Jayaraman, S Esakkirajan, T Veerakumar,Tata McGraw-Hil vt. Ltd., 2009.	ll Education
2) C	omputer Vision: Algorithms and Applications 2nd Edition Richard Szeliski.	

Career Advancement Course

Course Code	Course Name	Group	Teaching So (Hrs/Wee Lectures	Teaching Scheme (Hrs/Week)	
RJSPGITDSAI2I1	Business Intelligence and Analytics	CAC	2	-	2

Course Objectives

1. To understand how accurately represent voluminous complex data set in business intelligence analytics.

- 2. To understand the methodologies used to visualize large data sets.
- 3. To understand the process involved in business processes and visualization aspects involved in data visualization.

Learning Outcomes

- 1. Design and use various methodologies present in business inteligence
- 2. Design the process involved Power BI and Tableu present.

Unit	Topics	Lectures
Unit I	 Introduction to Business Intelligence: BI concept, I architecture, BI in today's perspective, BI Process Applications of BI like Financial analysis, statistical analysis, sales analysis CRM,ERP, result pattern, and ranking analysis, Balanced Scorecard, BI in Decision Modelling: Optimization, Decision making under uncertainty. Ethics and business intelligence. Logistic and production models: Supply chain optimization, Optimization modelsfor logistics planning, Revenue management systems. Data envelopment analysis: Efficiency measures, Efficient frontier, The CCR model, Identification of good operating practices 	10
Unit II	Data Visualization and Dashboard Design : Responsibilities of BI analysts by focusing on creating data visualizations and dashboards. Importance of data visualization, types of basic and composite charts Performance Dashboard: Measuring, Monitoring and management of Business, KPIs and dashboard, the types of dashboards, the common characteristics of Enterprise dashboard, design of enterprise dashboards, and the common pitfalls of dashboard design.	10
Unit III	 Power BI: introduction to power BI, natural-language queries, power BI Visualization charts, BI reports and dashboard. Tableau: uploading excel file, text and different files, Bins, Joining tables and data blending, Report generation, set and combined sets, data labels, sorting data and perform aggregation function, data visualization, custom sql, tableau advance reports and calculations, dashboard design dataserver. 	10

Unit IV	Modelling and Analysis: Exploring Excel Modeling capabilities to solve business problems, summarize and present selected data, introduction to business metrics and KPIs, creating cubes using Microsoft Excel Future of Business Intelligence: Emerging Technologies, Machine Learning, Predicting the Future with the help of Data Analysis, BI Search & Text	10
	Predicting the Future with the help of Data Analysis, BI Search & Text	
	Analytics – Advanced Visualization – Rich Report.	

References

- 1. "Interactive data visualization for the web", Scott Murray, O'Reilly Media, Inc., 2013.
- 2. "Visualizing Data", Ben Fry, O'Reilly Media, Inc., 2007.
- 3. "Security Data Visualization: Graphical Techniques for Network Analysis", Greg Conti, No Starch Press Inc, 2007.

Semester III

Course Code	Course Name	Group	Teaching Scheme		Credits
			(Hrs/Week)		
			Lectures	Practical	
RJSPGITDSAI301	Machine Learning - II	СС	4	-	4

Course Objectives

- 1. To give a comprehensive coverage of analysis methods like cross validation and bootstrap.
- 2. To study linear and non-linear models, model selection and regularization.
- 3. To study highly effective analysis methods like decision trees, Forests and Support Vector machines.

Learning Outcomes

- 1. Apply various data analysis concepts to the data sets.
- 2. Apply quantitative modelling and data analysis techniques to solve real-world business problems.
- 3. Analyse data using efficient linear and non-linear models.
- 4. Analyse data using decision trees, Forests and Support Vector machines.

Unit	Topics	Lectures
Unit I	Resampling Methods Cross validation, the bootstrap. Linear model Selection and Regularization Subset selection, shrinkage methods, dimension reduction methods, consideration in high dimensions.	10
Unit II	Moving Beyond Linearity Polynomial regression, step functions, basis function, regression splines, smoothing splines, local regression, generalized addictive models.	10

Unit III	Tree and forest The basics of decision tree classifier, decision tree regressor, bagging, random forest classifier, random forest regressor, boosting.	10
Unit IV	Support Vector Machines Maximal margin classifier, support vector classifiers, support vector machines, SVMs with more than two classes, relationship to Logistic regression.	10

References

- 1. "An Introduction to Statistical Learning With Application in R", By Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani, Springer Texts in Statistics.
- 2. "Machine Learning", Mitchell Tom, McGraw Hill, 1997.
- 3. "Pattern classification", 2nd edition, Richard O. Duda, Peter E. Hart, David G. Stork. Wiley, New York, 2001.
- 4. "Practical Data Science", Andreas Francois Vermeulen, APress, 2018
- 5. "Principles of Data Science", Sinan Ozdemir, Packt, 2016.
- 6. "Machine Learning: A Probabilistic Perspective", Kevin P. Murphy, MIT Press, 2012

Course Code	Course Name	Group	Teaching Scheme (Hrs/Week)		Credits
			Lectures	Practical	
RJSPGITDSAI302	Big Data Analytics	СС	4	-	4

Course Objectives

- 1. To learn the computational approaches to Modeling and Feature Extraction.
- 2. To Learn the need and application of Map Reduce.
- 3. To learn the various search algorithms applicable to Big Data.
- 4. To analyse and interpret streaming data
- 5. To learn how to handle large data sets in main memory.
- 6. To learn the various clustering techniques applicable to Big Data.

Learning Outcomes

- 1. Design algorithms by employing Map Reduce technique for solving Big Data problems.
- 2. Design algorithms for Big Data by deciding on Features set.
- 3. Design algorithms for handling big size datasets and propose solutions for Big Data by optimizing main memory consumption.
- 4. Design solutions for problems in Big Data by suggesting appropriate clustering techniques.

Unit Topics Lec	ectures
-----------------	---------

Unit I	Data Mining and Large-Scale Files Introduction to Statistical modelling, Machine Learning, Computational approaches to modelling, Summarization, Feature Extraction, Statistical Limits on Data Mining, Distributed File Systems, Map-reduce, Algorithms using Map Reduce, Efficiency of Cluster Computing Techniques.	10
Unit II	Mining Data StreamsStream Data Model, Sampling Data in the Stream, Filtering Streams,Counting Distance Elements in a Stream, Estimating Moments, CountingOnes in Window, Decaying WindowsClusteringIntroduction to Clustering Techniques, Hierarchical Clustering, Algorithms: K-Means, CURE, Clustering in Non-Euclidean Spaces, Streams andParallelism, Case Study: Advertising on the Web-Recommendation Systems	10
Unit III	Introduction to NOSQL Definition of NOSQL, History of NOSQL and Different NOSQL products, Exploring MondoDB Java/Ruby/Python, Interfacing and Interacting with NOSQL 2. NOSQL Basics NOSQL Storage Architecture, CRUD operations with MongoDB, Querying, Modifying and Managing NOSQL Data stores, Indexing and ordering datasets (MongoDB/CouchDB/Cassandra)	10
Unit IV	Introduction to Spark Introduction to Spark, Components of the Spark unified stack, Resilient Distributed Dataset (RDD). Resilient Distributed Dataset and Data Frames	10
	Creation of parallelized collections and external datasets, Resilient Distributed Dataset (RDD) operations, shared variables and keyvalue pairs. Spark application programming Purpose and usage of the Spark Context, Initialize Spark with the various programming languages, Describe and run some Spark examples, Pass functions to Spark, Create and run a Spark standalone application, Submit applications to the cluster, Introduction to Spark libraries.	
Referenc	es	
1." С 2."	Mining of Massive Datasets", Jure Leskovec, AnandRajaraman, Jeffrey David U Cambridge University Press, Second Edition, 2014. Data Mining Concepts and Techniques", Jiawei Han, MichelineKamber, Jian Pe Caufman Publications, Third Edition, 2011.	llman, i, Morgan
3. "	Data Mining – Practical Machine Learning Tools and Techniques", Ian H.Witter	n, Eibe

- Frank, Morgan Kaufman Publications, Third Edition, 2011.
- 4. "Principles of Data Mining", David Hand, HeikkiMannila and Padhraic Smyth, MIT PRESS.
- 5. Dan Sullivan, "NoSQL for Mere Mortals", 1 stEdition, Pearson Education, 2015. (ISBN-13: 978-9332557338)
- 6. <u>https://cognitiveclass.ai/courses/what-is-spark</u>

Course Code	Course Name	Group	Teaching		Credits
			Scheme		
			(Hrs/Week)		
			Lectures	Practical	
RJSPGITDSAI303	Deep Learning	сс	4	-	4

Course Objectives

- 1. To study fundamental concepts of Deep Learning and its applications.
- 2. To provide knowledge on fundamentals of deep networks, activation functions, loss functions and hyperparameters.
- 3. To study feed-forward and backpropagation approaches of deep networks.
- 4. To study major architectures of deep networks like Convolutional Neural Network, Recurrent Neural Network, Recursive Neural Network and Autoencoders.

Learning Outcomes

- 1. Train and test the various deep networks like Feed Forward Network, Convolutional Neural Network, Recurrent Neural Network, Autoencoder and Recursive Neural Network.
- 2. Create the various applications like Face Detection, Handwriting Recognition, Sentiment Analysis, etc. using Deep Neural Networks.
- 3. Optimize and Fine Tune the Deep Neural Network.

Unit	Topics	Lectures
Unit I	Fundamentals Concepts of Machine Learning	10
	Linear Algebra for machine Learning, Testing, Cross-Validation, Dimensionality reduction, Over/Under-fitting, Hyper parameters and validation sets, Estimators, Bias, Variance, Regularization-Introduction to a simple DNN, Platform for deep learning, Deep learning software libraries. Deep Feed Forward Networks Learning XOR, Gradient-Based Learning, Hidden units, Various Activation Functions, error functions, Architecture Design and other differentiation algorithms. Regularization for Deep Learning Parameter norm penalties, Early Stopping, Drop out.	
Unit II	Convolutional Neural Networks and Sequence Modeling Convolutional Networks: Convolutional operation, Motivation, Pooling, Normalization. Applications in Computer Vision ImageNet. Sequence Modeling Recurrent Neural Networks, Difficulty in Training RNN, Encoder, Decoder.	10
Unit III	Auto encoders Under complete, regularized, stochastic, denoising, contractive, applications, dimensionality reduction, classification, recommendation, Optimization for Deep Learning: optimizers. RMS Prop for RNNs, SGD for CNNs.	10

Unit IV	Deep Architectures in Vision Alexnet to ResNet, Transfer learning, Siamese Networks, Metric Learning, Ranking/Triplet loss, RCNNs, CNN, RNN, Applications in captioning and video tasks, 3D CNNs.	10
Referen	nces	
1.	"Deep Learning", Ian Goodfellow, Yoshua Bengio, Aaron Courville, MIT I (available at http://www.deeplearningbook.org)	Press, 2016
2.	"Deep Learning: A Practitioner's Approach", Josh Patterson and Adam Gibse 2017.	on, O'Reilly,
3.	"Machine Learning: A Probabilistic Perspective", Kevin P. Murphy, MIT Press, 20	012
4.	"Neural Networks and Deep Learning", Michael Online book, 2016 (http://neuralnetworksanddeeplearning.com/)	Nielsen,
5.	"Pattern Recognition and Machine Learning", Christopher and M. Bishop, Sprir Business Media, 2006.	nger Science
6.	"Deep Learning with Python", Jason Brownlee, eBook, 2016	
7.	"Deep Learning Step by Step with Python: A Very Gentle Introduction to D Networks for Practical Data Science", N. D. Lewis.	eep Neural

PG Labs

Course Code		Course Name	Group	Teaching Scheme (Hrs/Week)		Credits
RJSPGITDSAI1L3		PG Lab – V	PC	-	2	2
		Machine Learning - II				
Practic	c al List: Cross-vali	dation, model evaluation and sele	ction			
2.	Bootstrap	1				
3.	3. Dimensionality reduction using feature extraction.					
4.	Dimensio	nality reduction using feature sele	ction.			
5.	Polynomi	al Regression				
6.	Tree class	ifier and regressor				

- 7. Random forest classifier and regressor
- 8. Training linear classifier
- 9. Creating predicated probabilities
- 10. Identifying support vectors

Course Code	Course Name	Group	Teaching Scheme (Hrs/Week)		Credits
RJSPGITDSAI1L3	PG Lab – VI Big Data Analytics	РС	-	2	2

Practical List:

- 1. Feature extraction, summarization and data modelling for big data sets.
- 2. Mining data streams and estimating moments.
- 3. Implementation of Classification Algorithms Using Big Data.
- 4. Implementation of Clustering Algorithms Using Big Data.
- 5. Installation of Spark and Scala.
- 6. Creating spark application.
- 7. Using spark libraries.
- 8. Web and Social Analytics.
- 9. Finance and Risk Analytics.
- 10. Supply Chain and Logistic Analysis.

Professional Electives

Course Code	Course Name	Group	Teaching Scheme (Hrs/Week)		Credits
			Lectures	Practical	
RJSPGITDSAI3P3A	Data Science for Cyber Security	PE	3	-	3

Course Objectives

- 1. To learn different Cyber Threats, Various techniques of collecting Cyber Threat Intelligence Requirements and Information.
- 2. To learn analysis and disseminating Cyber Threat Intelligence.
- 3. To identify and document Risks, Threats and vulnerabilities for organization's productions for the infrastructure and assets.

Learning Outcomes

- 1. Identify and understand various cyber threats, accurately access threats, risks, and vulnerabilities, to minimize the potential for incidents.
- 2. Identify Vulnerabilities and document it for organization's Productions for the infrastructure and assets.

Unit	Topics	Lectures
Unit I	Defining Cyber Threat Intelligence The Need for Cyber Threat Intelligence: The menace of targeted attacks, the monitor and respond strategy, Why the strategy is failing, Cyber Threat Intelligence Defined, Key Characteristics: Adversary based, Risk focused, Process oriented, Tailored for diverse consumers, The Benefits of Cyber Threat Intelligence	10

Unit II	Developing Cyber Threat Intelligence Requirements	10
	Assets That Must Be Prioritized: Personal information, Intellectual property,	
	Confidential business information. Credentials and IT systems information.	
	Operational systems. Adversaries: Cybercriminals. Competitors and cyber	
	espionage agents. Hacktivists. Intelligence Consumers: Tactical users	
	Operational users. Strategic users.	
Unit III	Collecting Cyber Threat Information	10
0	Level 1: Threat Indicators File hashes and reputation data. Technical sources:	10
	honey nots and scanners. Industry sources: malware and reputation feeds. Level	
	2. Threat Data Feeds Cyber threat statistics reports and surveys Malware	
	analysis.	
	Level 3: Strategic Cyber Threat Intelligence. Monitoring the underground.	
	Motivation and intentions. Tactics, techniques, and procedures.	
	Analyzing and Disseminating Cyber Threat Intelligence	
	Information versus Intelligence, Validation and Prioritization: Risk scores, Tags	
	for context, Human assessment, Interpretation and Analysis: Reports, Analyst	
	skills. Intelligence platform. Customization. Dissemination: Automated feeds and	
	APIs. Searchable knowledge base. Tailored reports.	
Linit IV	Data Gathering Sampling	10
Oniciv		10
	The RIIOT Method of Data Gathering, Administrative Data Gathering, Technical	
	Data Gathering., Physical Data gathering.	
	RISK Analysis	
	Determining Risk, Creating Risk Statements, Team Review of Security Risk	
	Statements, Security Risk, Mitigation, Security Risk Assessment Reporting	
	Security Risk Assessment Approaches.	
	Quantitative vs. Qualitative Analysis, Qualitative Analysis, Tools, Security Risk	
	Assessment Methods, Relevant Standards and Regulations.	
Referer		
1.	"Cyber Threat Intelligence", Definitive Guide TM, By Jon Friedman. Mark Bouch	hard, CISSP.
2	"Intelligence, Driven Incident Despenses Outwitting the Adversery" Scott I. Debed	- Dobokoh
Ζ.	Brown, , O'Reilly Media, 2017.	is, Rebekan
3.	"How to Define and Build an Effective Cyber Threat Intelligence Capability Elsevier	r Science &
	Technology", Henry Dalziel, 2014.	
4.	"Dark Web Cyber Threat Intelligence Mining", Cambridge University Press, John	Robertson,
	Ahmad Diab, Ericsson Marin, Eric Nunes, Vivin Paliath, Jana Shakarian, Paulo Shakaria	an. 2017.

5. "The Cyber Threat", Bob Gourley, CreateSpace Independent Pub, 2014.

Course Code	Course Name	Group	Teaching Scheme (Hrs/Week)		Credits
			Lectures	Practical	
RJSPGITDSAI3P3B	Natural Language Processing	PE	3	-	3

Course Objectives

- 1. To learn structure of sentence.
- 2. To learn Morphological analysis, Lexical analysis, Syntactic and Semantic analysis.
- 3. To learn feature engineering concepts and rule-based systems for NLP.
- 4. Using Machine learning and deep learning for NLP.

Learning Outcomes

- 1. Analyse corpus and corpora of NL.
- 2. Learn the language modeling, formal grammars, statistical parsing, machine translation, and dialog processing.
- 3. Understanding statistical sequence labeling, information extraction, question answering and summarization, advanced topics in speech recognition, speech synthesis.

Unit	Topics	Lectures
Unit I	IntroductionUnderstanding natural language processing, Understanding basicapplications, Advantages of togetherness, NLP and Python, Environmentsetup for NLTK.Practical Understanding of a Corpus and DatasetWhat is a corpus? Why do we need a corpus? Understanding corpus analysis,understanding types of data attributes, exploring different file	10
	formats for corpora, Resources for accessing free corpora, Preparing a dataset for NLP applications, Web scraping.	
Unit II	 Understanding the Structure of a Sentences Understanding components of NLP, Natural language understanding, Defining context-free grammar, Morphological analysis, Syntactic analysis, Semantic analysis, Handling ambiguity, Discourse integration, Pragmatic analysis. Pre-processing Handling corpus-raw text, Handling corpus-raw sentences, Basic preprocessing, Practical and customized pre-processing. 	10
Unit III	 Feature Engineering and NLP Algorithms Understanding feature engineering, Basic feature of NLP, Basic statistical features for NLP, Advantages of features engineering, Challenges of features engineering. Advanced Feature Engineering and NLP Algorithms Recall word embedding, Understanding the basics of word2vec, Converting the word2vec model from black box to white box, Understanding the components of the word2vec model, Understanding algorithmic techniques and the mathematics behind the word2vec model.	10

		10
Unit IV	Kule-Based System for NLP	10
	Understanding of the rule-based system, Purpose of having the rule-based	
	system, Architecture of the RB system, Understanding the RB system	
	development life cycle, Applications, Developing NLP applications using the	
	RB system, Comparing the rule, based approach with other approaches,	
	Advantages of the rule, based system, Disadvantages of the rule-based	
	system	
	Machine Learning and Deep Learning for NLP Problems	
	Understanding the basics of machine learning, Development steps for NLP	
	applications, Comparing NLU and NLG	
Referer	ices	
1.	"Python Natural Language Processing", Jalaj Thanaki, Packt.	
2.	"Natural Language Processing with Python: Analyzing Text with the Natura	l Launguage
	Toolkit", By Steven Bird, Ewan Klein, and Edward Loper, NLTK.	
3.	"Speech and Language Processing", Daniel Jurafskey and James H. Martin, P	Prentice Hall,
	2009.	
4.	"Foundation of Statistical Natural Language Processing", Christopher D. N	Anning and
	Hinrich Schutze, MIT Press, 1999.	-
5.	"Foundations of Computational Linguistics", Ronald Hausser, Springer, Verleg, 2	1999.
6.	"Natural Language Understanding", James Allen, Benjamin/Cummings Publishi	ng Co. 1995.
7.	"Corpus – Based Methods in Language and Speech Processing". Steve Youn	g and Gerrit
	Bloothooft Kluwer Academic Publishers, 1997.	

Evaluation Scheme Internal Evaluation (40 Marks)

The internal assessment marks shall be awarded as follows:

- 1. 30 marks (Any one of the following):
 - a. Written Test or
 - b. SWAYAM (Advanced Course) of minimum 20 hours and certification exam completed or
 - c. NPTEL (Advanced Course) of minimum 20 hours and certification exam completed or
 - d. Valid International Certifications (Prometric, Pearson, Certiport, Coursera, Udemy and the like)
 - e. One certification mark shall be awarded one course only. For four courses, the students will have to complete four certifications.
- 2. 10 Marks

The marks given out of 40 for publishing the research paper should be divided into four course and should awarded out of 10 in each of the four courses.

I. Suggested format of Question paper of 30 marks for the written test.

Q. 1.	Attempt <i>any two</i> of the following:	[16 M]
a)		
b)		
c)		
d)		
Q. 2.	Attempt <u>any two</u> of the following:	[14 M]
a)		
b)		
c)		
d)		

II. 10 marks from every course coming to a total of 40 marks, shall be awarded on publishing of research paper in UGC approved Journal with plagiarism less than 10%. The marks can be awarded as per the impact factor of the journal, quality of the paper, importance of the contents published, social value.

External Examination: (60 marks)

	All Questions are compulsory.	
Q. 1.	Attempt <u>any three</u> of the following:	[15 M]
a)		
b)		
c)		
d)		
e)		
f)		
Q. 2.	Attempt <u>any three</u> of the following:	[15 M]
a)		
b)		
c)		
d)		
e)		
f)		

Hindi Vidya Prachar Samiti's, Ramniranjan Jhunjhunwala College of Arts, Science & Commerce (Autonomous) M.Sc. Data Science & Artificial Intelligence Syllabus

Q. 3.	Attempt <i>any three</i> of the following:	[15 M]
a)		
b)		
c)		
d)		
e)		
f)		
Q. 4.	Attempt <i>any three</i> of the following:	[15 M]
a)		
b)		
c)		
d)		
e)		
f)		
	~~~~~	

### **Practical Evaluation (50 marks)**

A copy of e-journal is essential to appear for the practical examination.

a)	Practical Question 1.	20
b)	Practical Question 2.	15
c)	Journal	10
d)	Viva	05

#### OR

a)	Practical Question 1.	35
b)	Journal	10
c)	Viva	05