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proposed method are presented in Section 3. The conclusion is discussed in Section
4.

2. Description of the method

In this section, we discuss the main idea and basic formulae of the differential
transformation as well as notations and results related to the transformation of
general nonlinear terms.

2.1. Idea of differential transform. Let w be a real analytical function in a
domain Ω and v0 be an arbitrary point in Ω. Then, w can be expanded in a Taylor
series in a neighbourhood of the point v0 [16].

Definition 2.1. The differential transform of kth derivative of the function w at v0
is defined as

(2.1) W (k)[v0] :=
1

Γ(αk + 1)

[
dαkw(v)

dvαk

]
v=v0

,

where 0 < α ≤ 1 and W (k)[v0] represents differential transform of w(v) at v = v0.

Definition 2.2. The inverse differential transformation is given by

(2.2) w(v) =
∞∑
k=0

W (k)[v0](v − v0)
αk.

Using definitions 2.1 and 2.2, function w can be represented in the form of Taylor
series:

(2.3) w(v) =

∞∑
k=0

1

Γ(αk + 1)

[
dαkw(v)

dvαk

]
v=v0

(v − v0)
αk.

The solution is approximated by

(2.4) w(v) =
∞∑
k=0

W (k)[v0](v − v0)
αk.

2.2. Faà di Bruno formula and Bell polynomials. Some necessary notations
and definitions of Bell polynomials are given below.

Lemma 2.3 ([9]). The partial ordinary Bell polynomials B̂k,l(x̂1, . . . , x̂k−l+1), l =
0, 1, 2, . . . , k ≥ l satisfy the recurrence relation

(2.5) B̂k,l(x̂1, . . . , x̂k−l+1) =
k−l+1∑
i=1

il

k
x̂iB̂k−i,l−1(x̂1, . . . , x̂k−i−l+2),

where B̂0,0 = 1 and B̂k,0 = 0 for k ≥ 1.

Theorem 2.4 ([9]). Assuming g and f to be analytic functions near v0 and g(v0)
respectively, and h is the composition defined as h(v) = (f ◦ g)(v) = f(g(v)) for all
v ∈ R. Let the differential transform of functions g, f , and h respectively, at v0,
g(v0), and v0 are denoted by G(k), F (k), and H(k) respectively. Then, H(k) satisfy
the recursive relation

H(0) = F (0),
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H(k) =
k∑

l=1

F (l)B̂k,l(G(1), . . . , G(k − l + 1)) for k ≥ 1,(2.6)

where B̂k,l are Bell polynomials as in Lemma 2.3.

Theorem 2.5. Assuming g and f to be analytic functions near v0 and g(v0) re-

spectively, and h is the composite defined as h(v) = (f ◦ g)(v) = f
(
g( vβ )

)
for all

v ∈ R and β ̸= 0. Let the differential transform of functions g, f , and h respectively
at v0, g(v0), and v0 are denoted by G(k), F (k), and H(k) respectively. Then, H (k)
satisfy the relations

H(0) = F (0),

H(k) =

(
1

β

)k k∑
l=1

F (l)B̂k,l(G (1) , . . . , G(k − l + 1)) for k ≥ 1,(2.7)

where B̂k,l are Bell polynomials as in Lemma 2.3.

2.3. Error estimate. For comparison [13], absolute error and maximum absolute
error are computed and defined as

EN (v) := |w(v)− wN (v)|,
EN,∞ := max

0≤v≤1
EN (v),

where w is the analytical solution and wN is the truncated series solution with
degree N . Furthermore, the relative error between exact and approximate solution
is defined by

RN (v) :=
EN (v)

|w(v)|
.

3. Applications

In this section, three examples are discussed to show accuracy and robustness of
the presented method. The MATHEMATICA software version 11 has been used
for numerical computations.

Example 3.1. Consider the following nonlinear proportional DDE

(3.1) w′′(v) = 2w′(v)− w
(v
2

)
+ ln

(
w
(v
4

))
+
√

w (v)− v

2
, 0 ≤ v ≤ 1

with initial conditions

(3.2) w(0) = 1 and w′(0) = 2.

The exact solution of (3.1)–(3.2) is given by

(3.3) w (v) = e2v.

For g1(v) = w(v4 ) and f1(x) = ln(x), we write h1(v) = f1(g1(v)). Also, for g2(v) =
w(v) and f2(x) =

√
x, we write h2(v) = f2(g2(v)). Let F1(k) be the differential

transform of f1(x). Then, using Definition 2.1, we get

(3.4) F1(k) =
(−1)k+1

k
, k ≥ 1.
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Let H1(k) be the differential transform of h1(v). Then, using Theorem 2.5, we
obtain

H1(0) = 0,

H1(k) =

(
1

4

k
) k∑

l=1

F1(l)B̂k,l (W (1), . . . ,W (k − l + 1)) for k ≥ 1.(3.5)

Let F2(k) be the Differential transform of f2(x). Then, using Definition 2.1, we get

(3.6) F2(k) =
n(n− 1) . . . (n− k + 1)

k!
, where n =

1

2
,

Let H2(k) be the differential transform of h2(v). Then, using Theorem 2.4, we
obtain

H2(0) = 1,

H2(k) =
k∑

l=1

F2(l)B̂k,l (W (1), . . . ,W (k − l + 1)) for k ≥ 1.(3.7)

Now, applying differential transform to (3.1)–(3.2), we obtain the following recursive
relation

W (k + 2) =
1

(k + 1)(k + 2)

(
2(K + 1)W (k + 1)− 1

2k
W (k) +H1(k)(3.8)

+H2(k)−
1

2
δ(k − 1)

)
,

W (0) = 1 and W (1) = 2.(3.9)

Solving equations (3.4)–(3.9), we obtain different components. Now, with the help
of Equation (2.4), the series solution is given by

(3.10) w(v) = 1 + 2v + 2v2 +
4

3
v3 + . . . ,

which converges to the exact solution given by (3.3).

Table 1. Comparison of numerical solution w with the exact solu-
tion when N = 12 for Example 1
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Table 2. Maximum absolute errors for w of Example 1

N EN,∞

5 3.8E-01
10 3.4E-04
15 2.8E-08

Figure 1. Absolute errors for w when N=5, 10, and 15 of Example 1

Figure 2. Comparison of the exact solution and present solution
(for N=12) for Example 1.

Example 3.2. Consider the following nonlinear fractional differential equation

(3.11) Dαw(v) = 2w(v) + 4w(v) lnw(v), α ∈ (1, 2),

with initial conditions

(3.12) w(0) = 1 and w′(0) = 0.
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Denote h(v) = f(g(v)), where g(v) = w(v) and f(x) = ln(x). Let F (k) be the
differential transform of f(x). Then, using Definition 2.1, we get

(3.13) F (k) =
(−1)k+1

k
, k ≥ 1.

Let H(k) be the differential transform of h(v). Then, using Theorem 2.4, we obtain

H(0) = 0,

H(k) =

k∑
l=1

F (l)B̂k,l(W (1), . . . ,W (k − l + 1)) for k ≥ 1.(3.14)

Now, applying differential transform to equations (3.11)–(3.12), we obtain the fol-
lowing recursive relation

Γ
(
α
(
k
2 + 1

)
+ 1

)
Γ
(
αk

2 + 1
) W (k + 2) = 2W (k) + 4

k∑
r=0

W (r)H(k − r),(3.15)

W (0) = 1 and W (1) = 0.(3.16)

Solving equation (3.13)–(3.16), we obtain different component. Now, with the
help of Equation (2.4), the series solution for α = 2 is given by

(3.17) w(v) = 1 + v2 +
1

2
v4 +

1

6
v6 + . . . ,

which converges to the exact solution given by

(3.18) w(v) = ev
2
.

Table 3. Comparison of numerical solution w with different values
of α for Example 2

Example 3.3. Consider the following nonlinear fractional differential equation

(3.19) Dαw(v) + ew(v) = 0, α ∈ (0, 1),

with initial condition

(3.20) w(0) = 0.
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Figure 3. Comparison for different values of α for Example 2

Denote h(v) = f(g(v)), where g(v) = w(v) and f(x) = ex. Let F (k) be the
differential transform of f (x). Then, this F is given by

(3.21) F (k) =
1

k!
.

Let H(k) be the differential transform of h(v). Then, using Theorem 2.4, we obtain

H(0) = 1,

H(k) =

k∑
l=1

F (l)B̂k,l(W (1), . . . ,W (k − l + 1)) for k ≥ 1.(3.22)

Now, applying differential transform to equations (3.19)–(3.20), we obtain the fol-
lowing recursive relation

Γ(α(k + 1) + 1)

Γ(αk + 1)
W (k + 1) = −H(k) and(3.23)

W (0) = 0.(3.24)

Solving equations (3.21)–(3.23), we obtain different component. Now, with the
help of equation (2.4), the series solution for α = 1 is given by

(3.25) w(v) = −v +
v2

2
− v3

3
+

v4

4
− v5

5
+ . . . ,

which converges to the exact solution given by

(3.26) w(v) = −1− ln(v).
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Table 4. Comparison of numerical solution w with different values
of α for Example 3

Figure 4. Comparison for different values of α for Example 3

4. Conclusion

We have obtained approximate solutions for different types of nonlinear propor-
tional delay differential equations and fractional differential equations with initial
conditions using differential transform and Bell polynomials. The solution is calcu-
lated in the form of a convergent power series with easily computable components.
It is also worth pointing out that the advantages of the present method in place
of numerical methods are simplicity, robustness, and small size of calculation. The
present method is a very good tool to handle different types of nonlinearity easily.
Moreover, its small errors made it a powerful technique. Therefore, the present
method can be seen as a promising tool for solving different types of nonlinear
differential equations.
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