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Abstract

The purpose of this paper is to extend Chaplygin’s theorem to second-order neutral
differential equations with piecewise constant delay. We start with some auxiliary
results concerning upper and lower solutions of second-order neutral differential
equations. We then use these extended results to find bounds in terms of Chaplygin
sequences for the solution of the addressed problem. These bounds, formed by the
construction of upper and lower solutions, are shown to converge to the unique
solution of the equation. Finally, we show that the error estimates obtained are
sharper than those for ordinary and first-order neutral differential equations.
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1 Introduction

Delay differential equations have been gaining a lot of interest owing to their
widespread applications in modeling several physical phenomenon, particularly
those appearing in biological systems. These equations exhibiting hybrid properties-
discrete and continuous, have been exhaustively studied, see [2, 8, 11, 15, 25], to
mention a few. Cooke and Wiener [7] extended these concepts, coupled with
comparison principles and the monotone iterative technique, to differential equations
with piecewise constant delay of generalized-type. Guyker [10] derived the existence
criteria for the eventually periodic solutions of this class of differential equations. In
2016, Marzban and Hoseini [22] developed useful computational techniques to
efficiently solve these equations. Later, Muminov [23] proposed a method that
reduces a 2n periodic solvable equation to a system of n + 1 linear equations. Their
method is primarily to obtain periodical solutions of second-order neutral differential
equations with piecewise constant arguments. Cabada and Ferreiro [5] studied first-
order neutral differential equations with piecewise constant arguments coupled with
nonlinear boundary conditions. Chiu [6] obtained several qualitative results for
piecewise constant linear and nonlinear delay differential equations with impulsive
effects in addition to proving a variation of parameters formula with Green function-
type and Gronwall-type integral inequality.

Several methods like the method of quasilinearization [3] provide a monotone
sequence of approximations. These approximations are shown to converge to the
unique solution of the given nonlinear differential equation. In order to get better
results, these techniques were refined in [19] by loosening restrictions on the
nonlinear function. For nonlinear differential equations, the monotone iterative
technique was developed by Ladde and Lakshmikantham [17]. A variation of the
successive iteration approach that includes constructing a series of functions that
approximately get closer to the original solution was developed by Chaplygin in
1954. This method is known as the Chaplygin method. Lakshmikantham and Leela
[18] employed this method to study nonlinear ordinary differential equations. Later,
in 1980, Kamout [13] extended this method to first-order functional partial
differential equations. Zhukovskaya and Filippova [26] studied first-order delay
differential equations using Chaplygin’s method. Further, Kumari and Valaulikar [16]
employed Chaplygin’s method to study first-order neutral differential equations. The
Chaplygin method has been gaining momentum and has been applied to stochastic
differential equations by Soheili and Amini [24]. As studies on time scales has
become very popular since the end of the twentieth century, Jin and Zhang [12]
derived a generalized Chaplygin formula for nonholonomic systems, and studied the
Noether theorem for generalized Chaplygin system on time scales. In 2020,
Zhukovskaya and Serova [27] obtained the existence theorem and an estimate for the
solution of a two-point boundary value problem for an implicit differential equation
with a deviating argument, which is similar to the Chaplygin theorem on differential
inequalities. Very recently, Benarab [4] gave an interesting application of Chaply-
gin’s method for solvability of the Cauchy problem of implicit differential equations
of order » in the construction of the estimates of the solution. Certified as
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Chaplygin’s method for second-order neutral differential equations

Motivated by these facts, in this paper, we follow an approach more rigorous in
analysis and slightly different from [16] to extend Chaplygin’s method to second-
order neutral differential equations with piecewise constant deviating arguments of
the form

Y'(0) = g(t,x(0),y' (0, y([), ' ([1),»" (1)), ¢ €10,00) (1)

with the initial conditions

¥(0) = ag, Y (0) = a1, y'(0) = a0z, (2)

where o; € R, i =0, 1,2, [-] denotes the greatest integer function, and g : E — R,
E C R* x R’ is a bounded function satisfying the following conditions.

1. g is twice continuously differentiable.
2. g possess all second-order partial derivatives which are positive and sufficiently
small.

We shall show that the results obtained in this paper are better than those existing in
literature, and particularly in [16].

The rest of the paper is organized as follows. The following section provides all
necessary definitions, examples, lemmas, and extensions of existing results to
second-order neutral differential equations with piecewise constant deviating
arguments. In Sect. 3, we prove Chaplygin’s theorem using the Mean Value
Theorem and establish the error analysis which ascertains that the results in this paper
are better than those existing in literature. Section 4 summarizes the results obtained.
We conclude by giving future scope to motivate interested researchers.

2 Essential preliminaries

In this portion, we review several fundamental results that will come in handy later
on. The set of all real-valued continuous functions defined on 7 is denoted by C(Z, R).
Throughout this manuscript, £ will denote an open set on R™ x R>.

Definition 1 A function y € C([0, 00), R) is said to be a solution of (1)-(2) if

(i) derivatives ' and )" exist at each ¢ € [0, c0) except possibly at [f] € [0, 00)
(where only one-sided derivatives exist).
(i) Equation (1) holds on each interval [n,n 4+ 1) C [0,00), n € N.
(iii)  the conditions (2) hold.

Definition 2 Let p € C([0,00),R). We define the Dini derivatives, used in this
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)

h) — n) —
Dyp(t) = lim SUPM — piminp2H ) = (0
h—0+ h h—0+ h

and with D, p(¢) = ¢(¢),

t+h)—q(t t+h)—q(t
Dy p(t) = hmsupw — liminfM.
’ h—0+ h h—0+ h

Zygmund’s lemma that will be used is stated below.

Lemma 1 (Zygmund'’s Lemma [18, Lemma 1.2.1]) Let u € C([0, f),R), p € R" be
such that Du(t) <0 for t € [0,f), D being a fixed Dini derivative. Then, u is
nonincreasing on [0, ). Further, if v,w € C([0, ), R), and for some fixed Dini
derivative D, Dv(t) <w(t) for t € [0, f5). Then, D, v(t) <w(t) for t € [0, B).

Lemma 2 [18, Lemma 1.3.1] Let g € C(E, R) and suppose that [0, ) is the largest
interval on which the maximal solution { of (1)~(2) exists. Suppose [0, 1] is a compact
subinterval of [0, ). Then, there is an & > 0 such that for 0 <e<ey, the maximal
solution {(t,¢) of (1)~(2) exists on [0,1] and

lim (r,2) = £(1)

uniformly on [0, 1].

We now turn to define upper and lower solutions of the associated neutral
differential equation.

Definition 3 (Lower solution) Let p e C([0,f],R), B € R" be such that

Dyp(t), Dayp(t) exist for ¢ €[0,f] and (z,p(¢),p' (1), p([1]),P'([]),p"([1])) € E.
We say that p is a lower solution of (1)—(2) if it satisfies the differential inequalities

Dy p(t) <g(t,p(0),p' (), p([1]), P'([1]), 2" ([1])), €0, f]

and

p(O) S %o, p/(o) S o1, PN(O) S .

Definition 4 (Upper solution) Let g € C([0,f],R), B &€ R" be such that

D1q(t), D214(t) exist for 1[0, and (z,4(¢),4'(1),q([1]),4'([1),4"([1])) € E.
We say that ¢ is an upper solution of (1)—(2) if it satisfies the differential inequalities

D1 q(t) > g(t,9(0),4'(1),q([1]), 4'([1]), 4" ([1])), t€[0,p]

and Certified as
TRUE COPY
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Chaplygin’s method for second-order neutral differential equations

Since Eq. (1) is relatively less studied, we give an example illustrating the upper
and lower solution.

Example 1 Consider the following second-order neutral differential equation
y'(#) = y(t) sin(([1])) + /(1) + cos(y([])), 1€ [0,00), 3)

with the initial conditions

¥(0) =»/(0) ="(0) = 1. (4)

Putting y(¢) = ¢’ in the right side of (3), we get
¢ sin(el) 4 ¢ + cos(ell) <e' + e +1 =2¢' +1.
Also, '(t) = ¢ <2¢' + 1. Thus, y(¢) = €' is an upper solution of (3)~(4). Now,
putting y(¢) = e in the right side of (3), we get
e 'sin(e ™) — e+ cos(el ) > —e T —e' —1= -2 — 1.
Also, y'(t) = e "> —2e ' — 1. Thus, y(¢) = e’ is a lower solution of (3)—(4).
The Arzela—Ascoli theorem that will be used is stated below.

Theorem 1 (See [14, Theorem 8.26]) Let I be a closed and bounded interval in R
and {f,,} be a sequence of functions that is uniformly bounded and equicontinuous on
I Then there is a subsequence {fy, },cn that converges uniformly on 1.

We shall start by proving the following lemma which will be repeatedly used in
establishing our main results.

Lemma 3 Let g € C(E,R) be such that g(tx,y,z,u,v) is strictly increasing in both z
and u for (t,x,y,v) € [0, B) x R?, B € RT. Assume that

g(trxlaylyzlaulvvl) _g(taXZay27227u27v2) SL](X] —Xz) +L2(yl _y2)
+ L3(z1 —z2) + La(uy — up)
+Ls(vi — ),

where x| > X2, y1 > ¥2, 21 > 23, Uy > up,vi > v and L;, i € {1,2,3,4,5} are positive

constants with L := max{L;, Ly, L3, L4, Ls} and Ls < 3@22. Suppose that p and ¢ are,

respectively, lower and upper solutions of (1)—(2) satisfying the following conditions.

(Ci) Forte|0,B), peR,
(6,p(0),P'(0), p([2),P'([1]),P" (1)), (t,4(2),4 (1), q([1]), 4'([1]), 4" ([1])) € E.

(C1) p(0) <x(0)<q(0),p'(0) <y'(0) <¢'(0), and p"(0) <y"(0) <¢"(0), where y
is the unique solution of (1)—(2). Certified as
TRUE COPY
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Proof Let p, and g, denote, respectively, lower and upper solutions of (1)—(2) in

[n,n+ 1), n € Ng such that {p,} and {g,} converge uniformly on [0, /) to p and
q respectively. We shall prove p,(t) <y,(t) <gn(t), t € [n,n+ 1), n € Ny, where
{yn} is a sequence of functions converging uniformly on [0, §) to y, which is the
unique solution of (1)-(2). For this, we shall only show y,(¢) <g,(¢) for
t€n,n+1) and the proof for p,(f) <y,(f), on the same interval is virtually
identical. Assume that g(z,¢,(¢),q,(¢),9.([1]),4,([t]). 4. ([7])) <q.(¢). This gives for
t€nn+1)

g(t,qn(0): (1), n(n), 4, (n), 4, (1)) <g, (1)

Claim: y,(¢) <q,(t) for ¢t € [n,n + 1).
If this is false, then there would exists n; € [n,n + 1) such that

gn(m) = ya(n1), ya(t)<qu(t) forte (n,m), (5)
and forz € (n,n+1)

V() > qu(2).

Choose /# > 0 small enough so that n + 2 <n;. Then,

gn(n+h) = g,(n) + hq',(n) and y,(n + h) = y,(n) + b/, (n).

Now, from Eq. (5), we obtain g,(n+ k) — y,(n + h) > 0.

Then qu(n) + e, (1) — a(n) — hv, (n) > O which gives h(,(n) — v, () > 0.
That is, ¢/,(n) >y, (n). Since h > 0, y/,(n; — h) <q!,(n, — h), we have
q,(m) — q,(m — h) <y, (m) — ¥, (n1 — h), which results in,

q,(m) —q,(m —h) .V (m)=y,(mi—h)
h < jim h = a(m).

q,(m) = lim

That is,
g, (n1) <y, (n). (6)
Since g is strictly increasing and y,(n1) = g,(n1) and ¥, (n) <q/,(n), it follows that
V() < g, (m), (7)

which contradicts (6). Hence y, () <g,(t) for ¢t € [n,n+ 1)
Next, we define w,(f) := y,(t) — e’ for t € [n,n + 1), where & > 0 such that ¢
tends to 0 whenever n tending to co. Then w/,(¢) = )/, (f) — 3Lee*!". This gives

() .
2(0) = yu(0) — £<p,(0) < ¢4(0 Certified as
Wi (0) =34 (0) — £<yu(0) < ¢g4(0) TROE COPY
and |
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Chaplygin’s method for second-order neutral differential equations

(C2)

w,(0) = 3,(0) = 3Le <¥,(0) < g(0).

n

Further, for 7 € [n,n + 1)

w/(t) = y!(t) — 9L ee™

D1, 9n(0), (1), a1 34, (1), Y4((1])) — OLee™™

= g(t.yn(), ¥, (0, yu (D), ¥, (1D ¥, ([])) — &t wa (), ), (2), wa ([21), Wi, ([2]), iy ([£]))
gt (1), W, (), ([1), w4 ([1]), Wi ([1])) — OL26c™
S Li(a(t) = wa() + Lo (v, (6) = w, (1)) + Laa([£]) — wu([1]))
+ La (v, ([A) = w, (D) + Ls (5, ([4]) = wi (1))
gt wae) wh (1), wia (1)), i (1), W ([1)) — L%
<Lt + L,3Lee®™ + Lyee®™ + Ly3Lee™™" + Ls9L% e’
(1w (1), (), wa([1), w4 ([1]), Wi ([1])) — OL6c™™
<Lee®t 431%™ + Lee®™ + 430%™ + (3L — 2)Lee™™”
+g(t, W (0), W, (1), wa([1]), w, (1), W ([1])) — 9L%ee™
= Lee®™ (1 — 6L) + Lee®™ (6L — 1) + g(t, wa(2), W, (£), wa([£]), W, ([2]), W/ ([1]))
< Lee™ XU (1 — 6L 4 6L — 1) + g(t, wa (1), w, (1), wa([1]), w, (1), w} ([1])).
Thus, wy; () <g(t, wa (), w, (), wa([t]), w, ([£]), w; (1)) for ¢ € [n,n 4 1).
Since  for t€[n,n+1), g(t,q:(t),9,(t),q:([1]), q,([1]). 4,([1])) <q, (1) and
wy(n) <gn(n)w,(n)<q, (n)w!(n) <q)(n), we obtain w, (¢) <q,(¢) forall ¢ € [n,n + 1).
Now, letting ¢ tends to 0, we get
ya(t) < qu(¢) for all ¢ € [n,n + 1).
On similar lines, it is easy to see that
Du(t) <yu(t) forall ¢ € [n,n+ 1).
As our desired result is obtained, the proof is now complete. O

The following comparison theorem will be used to prove the sharpness of our
results.

Theorem 2 Let g € C(E, R) and suppose that [0, ) is the largest interval on which
the maximal solution { of (1)~(2) exists. Let we C([0,f,R) be such that
(1, w(2), W/ (0), (1), W (1), W' (1)) € E for 1 € [0, B), wo <o, wh < o1, Wl <,
and for a fixed Dini derivative D,

Daw(t) < g(t, w(t), W (2), w([d]), w'([1]), W' ([1])), ¢ €0, B). (8)

Then Certified as
TRUE COPY
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w(t) <{(2), t€]0,f). )

Proof 1In view of Lemma 1, we can rewrite Eq. (8) as follows.
Do w(t) <g(t, w(t), w' (), w(lr]), w'([1]), w"([1])), ¢ €[0,p). (10)

Let 0 <7 < f5. By Lemma 2, the maximal solution {(¢, €) of (10) exists on [0, ] for all
& > 0 sufficiently small, and

{() = lim (2, 2), (11)

uniformly on [0, 7]. Now, consider the following second-order neutral differential
equation

¥'(0) = gt y(0), ' (), y([]), 5 ([1)," ([])) + &, (12)
with an initial condition
0)=a+e, V(0)=m+e H'(0)=0m+te (13)
Using (12)—(13) and (10), and in view of Lemma 3, we obtain
w(t)<((t,e), te€]0,1].

In view of (11), this last inequality proves the required assertion. This completes the
proof. U

3 Main results

We shall now prove Chaplygin’s theorem for (1)—(2).

Theorem 3 Let g: E — R be a continuous function, where
E:= {(t,x7y,z,u,V) €RT xR 2 [p(e) — o] <a, V(1) — | <b, [¥([f]) — 0| <,

V() = ol <d, /(1) = o] e},

for some suitable nonnegative real constants a,b,c,d,e. Suppose that there exists
M > 0 such that g(z,x,y,z,u,v) <M for all (¢,x,y,z,u,v) € E. Further, assume that
all first-order partial derivatives of g, D;g, i = 2,3,4,5,6 exist and second-order
partial derivatives of g, D;yg >0, i = 2,3,4,5,6, in E. Let pg,qo : [0, ) — R be
differentiable functions such that

po(t)<g(t,po(1),po (1), po([1]), po([1]), P5 (1)), (14)
Po(0) =, py(0) =0y, py(0) =0y Sttt
and TRUE COPY
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Chaplygin’s method for second-order neutral differential equations

q0(t) > g(t,q0(1),q0(1), q0([t]), 40 ([1]), g0 ([1])),
q0(0) = o, q(0) = o, qo(0) = o3

respectively. Then there exists a Chaplygin sequence {(p,,¢,)} such that

pn(t) <pn+l(t) <y(t)<qn+l(t)<%1(t)’ te [Ovﬁ]y

and

Pn(0) = 20 = ¢a(0), p,(0) =1 =¢,(0), p,(0) =% =¢,(0),

where y is the unique solution of (1)—(2) and the sequences of functions {p,} and
{qn} converge uniformly on [0, f] to y.

Proof Define

E:{[ﬁm if 6 [6) (16)

B if §=[p].

From the hypothesis, we see that py and g, are, respectively, the lower and upper
solutions of (1)—(2). By Lemma 3, we have

B2 5 B
pO(t)Sy(t)SqO(t)7 re U[F,F+I)U[ﬁ—l,ﬁ)
r=0

po(r) =y(r) = qo(r), po(r) =y(r) =qo(r), po(r) =)"(r) = q5(r),
. p-2 . .
foreachr =0,1,...,f—2.Fort e J[r,r+1)U[f—1,8), wedefineg, : E — R
r=0
and g, : E — R as follows.

g1(t,3(6),5 (), ([D) ' ([), " ([1D): 0. 90) = &(t,po (1), P () Po([1]), P ([£]). o ([£]))

+ %ng(tvpo(t)7136(t)7po([t}),pé([t])apiﬁ([t]))(y(t) = po(1))

+%D3g(t7P0(I)vP6(t)7P0([ID’P6([t])apg([l]))()/(t) —po(1))

+%D4g(t»po(t),pé(t)mo([ﬂ%%([t])ypﬁ([t]))(y([t]) —po([1]))

+ %Dsg(t,po(t)7p6(t)7po([f]),p6([t]%pé'([t}))(y’([t]) —po([1))

+éDsg(hpo(t)7p6(t)7po([t}),p6([t])apé’([t}))(y"([t]) = o)

and Certified as
TRUE COPY

Msﬂ

Ramniranjan Jhunjhunwala College,
Ghatkopar (W), Mumbai-400086. &) Springer



J. Z. Lobo et al.

g 2(6,(8),5/ (0, 9([£) ' ([), " (D) 0. 90) = &(t, po (1), o () po([1]), P ([£]) . P ([£]))
]

{gtpo 1),00(),po([1), po([1) 25 ([1])) — & (£, q0 (1), 45(), 90 ([1]), o ([£]), g5 ([) }
{y() )+ Y (@0) —po(e) | ¥ —pold) | y([) = pé(([t])

OIS
o) —ao(t) " (1) — (@) polltl) — a0l " p([e)) — () pi((e) — ah (I
(18)
We find that if t = r, where »r =0, 1,2, .. _’B, 1, then
g1(t, (), (1), ([1]),'([11), " ([]): Po, q0)
=g (6, y(),'(1), »([1]), ¥ ([1])»"([]); Po, q0)-
For t € ﬁoz[r,r+ 1), let p; and ¢; be solutions of the linear neutral differential
r=0
equations
y'(0) = g1 (t.y(0), 5/ (@), ([, ([), " ([1]): Po; q0) (19)
y(r) =po(r), V() =po(r), ¥'(r)=ps(r),
and
Y1) = ga(t, (), (), ¥ ([1]), ' ([1]), " ([]): Po; q0). (20)
W(r)=qo(r), V() =q(r), »'(r)=qp(r),
respectively. Since pg is a lower solution, using Eq. (17), we get
Po(t)<g(t,po(2), po(1), o([1]), P (1)), P ([1])) Q1)
= &1(t,po(t),25(2), po([1]), o ([£]), P ([1]): Po, q0)-
Now, using (19) and (21), and in view of Lemma 3, we obtain
po(t) <pi(t), te (r,r+1). (22)
On the same lines, we can show that
q1(t) <qo(t), te(r,r+1). (23)

Also, from Eq. (18)
Po(t) <g(t po(), (), o ([1]), P (1), P (1))

= &£, p0(1), Py (0), 20 ([1), Py (1), Py () Por q0), £ € U rr+1)

and, from Eq. (20) Certified as
TRUE COPY
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Chaplygin’s method for second-order neutral differential equations

p-2
q7(1) = &2(t,q1 (1), 4, (), a1 (), 4 () 41 (1), ¢ € (Jlror+ 1)
r=0

By Lemma 3,
po()<qi(t), telrr+1), r=01,2,....p-2. (24)
Now, we show that

P <g(t,pr(0, P (0, pr ([0, P4 ([, Y (1)), t€(rr+1), r=0,1,2,....p-2.

First we note that for ¢ € [r,r + 1), r = 0,1,2,....6—2,

po)<pi(t), po)<pi(t), po([)) <pi([A]), po([]) <pi([A),  po([]) <pi([F)-
It follows from the Mean Value Theorem that there exist &, i = 1,2, 3,4, 5 such that

for t€rr+1), r=0,1,2...,6—2, po(t) <& <pi(t), phlt) <& <pi(o),
po ([1) <& <pi([1]), po([t]) < & <pi([1]), po([r]) < & <p{([f]) and

(6.1 (0.1 0),p1 (10,24 (1), 1) = (600 1), po( 11 P () i 1)

+%ng(t,po(t)7p6(t),po([t])7p6([t]),p6’([t]))(p1(t) = po(1))
Dsgt,pol0),(0)- o) P 1) PHIED) 04 6) = ) (0)

+ 3 Daglt,po(0). (1) o), P 1) P4(1D) 1 (1) — po([)

5 Dsgtpol0), P (0) o). o1, 1)) P4 1) = Pi(4)

+ 5 Dag(tspo(0), (0. o), P14, P4 (D) ) — pi)

152864, 20(0).pol[1)-([0): 24D 1 () — pole)?

15 D3sg(tpo(0), &, pol14) P PP 0) = (0

+ 1 Daag 6 po(0), P (0, 5, 1), P4 1)) 1 (1) = poI))?

D5l po(0) (0. poll) 4P D) (1) — (1))

L Desg(t,po(0). 2 (1), pol (). 2 ([1): E5) (1) — (D)™

—_—

—_— | — W

— N

10
Since D;g > 0, i=2,3,4,5,6, we obtain
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g(t,p1(0), Py (1), 1 ([1), £y ([11), P ([1))) > &(t, po(8), P (8), po([1]), PO ([1]), PG ([1]))

+lng(t,Po(t)7P6(f)7po([f]),PB([I])ypg([f]))(Pl(f) —po(t))

5
+%Dsg(fapo(t)7p6(t),po([f])7p6([t]),p8([f]))(p’1 () = po(1))
+%Dz‘g(t,po(t),p()(t),po([t]),pé([f]),pg([f]))(pl([t]) = po([1]))

+%Dsg(t,po(t)7p6(f),po([f]),p6([f]),pé’([t]))(p'l([f]) —po([1]))
+%Deg(t,po(t),p()(t)vpo([t]),Pé([f]),pg([t]))(p'{([t]) = po([1))-
That is,

g(t,pr (), P, (), 1 ([1), 2y ([A]), Y ([£]) > &1 (2, 1 (2), P (2), 1 ([4]), 3 ([1]), P ([2])),

forallte[r,r+1),r=012,...,p—2.
Since p; is a solution of (19), we get that

P <gtpr(, Py, (). 21D, A (), tE€lrr+1), r=012,..,-2.

Thus, p; is a lower function and hence

p1(0) <y(p), te[r,r—|—1),r=0,l,2,...,ﬁ—2. (26)

Now, since ¢, is a solution of (20), using Eq. (18), we can write

qlll(t) >g(taql(f)aqll(f%ql([t])v‘]ﬁ([ﬂ)»‘/{([ﬂﬁpm%)» te [r,r—i— 1),}’ = 0’ 1727’ "7!3_ 2.

Thus, ¢ is an upper function and hence

YO <qit), te€frr+1),r=012,. -2 (27)
From (26) and (27) and in view of (22) and (23), we get

p()(f) Spl(t) Sy(l‘) §q1(1>§q0(t) on ¢ (}",I"+ 1),7': 07 1727"'7ﬁ_2'
(28)

Based on the above discussion, we see that for a given pair of functions (py, go), we

obtain a new pair of functions (p1,¢;) such that
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P <g(t,pr (), pr(0), pr ([1]), Py (1), £ ([41))

and

q1(t) > g(t,q1(1), 4, (1), 1 ([1]), 1 ([1]), 4} ([1]))

for t € [r,r+ 1),r:O71727...,ﬁ—2 with p;(r)=a9 = q(r), pi(r) =01 = ¢} (r),
)

pi([r]) = 20 = q1([r]), () = o = g4 (Ir)) Pi([r]) = o2 = gy ([r]).
Repeating this process we obtain a well-defined Chaplygin Sequence {(pp+1,qns1)}
of functions such that

) p(0) <g(t,pa(0), 2, (1), pa([), 2, (), 2 ([A]), fOr € [rr41)r=
0.1,2,...f =2 and py(r) = w0, p,(r) = o1, pu(lr]) = o0, P}, ([r]) = ou1,
p(lr]) = 2.

(i) q,(0) > &(t,9n(6), 4, (1), 4 (1)), 4, (1)), 4 ([1])), ~ for 2 € fr,r+1),r=
0.1,2,...,f =2 and gu(r) = a0, ¢,(r) =1, au([]) = o0, g, ([r]) = o1

(
(i) pa(?) Sanrl( ) SH(0) Sguir(t) <qu(t), te€ [l} - 1,8
(iv) p:,/Jrl(t) &1 (t anrl(t)v R
P @), 2wt (1) 2t (1) 2yt ()3 s ), £ € [B— 1, B].
V) 1 (1) = &2(8 i1 (), 41 (6), gni1 ([1]) s 1 (1),
q:’l’-‘rl([t]) pnaQn) te [ﬁ - laﬁ]

From (iii), we see that {p,} and {g,} are monotonic sequences that are uniformly
bounded on [,é — 1, fi]. Furthermore, since each p, and g, are solutions of (1)—(2), the

sequences {p,} and {g,} are equicontiuous on [§ — 1, f}]. Finally, application of
Theorem 1 yields that the sequences {p,} and {g,} converge uniformly to y on

[f — 1, B]. This completes the proof. O

Having established the Chaplygin theorem for second-order neutral differential
equations for piecewise constant delay, we shall now establish another fundamental
result that actually demonstrates that the results reported in this paper are sharper
than those present in existing literature.

Theorem 4 [n addition to the hypothesis of the Theorem 3, define
1= () s po(t) <y <qo(t) teUrr+ B—1,8) ¢,

where B is defined in (16). Also, define

H = sup {Dig(taxayazvuvv) S 273747576}
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K = sup {Dug(t,x,y,z,u,v) :i=2,3,4,5,6}

(ty)el
1
Ifo< — < h
0<qo(t) = po(t) < 2K felis ¢, then
1\"2¢
1) =)< (3) 25 (e 0B e, (29)

where p, and g, are, respectively, lower and upper solutions of (1)—(2).

Proof We shall prove the result by the principle of mathematical induction on n. By
assumption, we see that the result clearly holds for n = 0. Suppose the result holds
for a fixed n € N. That is,

1\" 2¢
n t) — n t S = Py
00 -p01< () 7
Based on the definition of p,.; and g,+1 given in Theorem 3, we can write

|93051(2) = Py (8)]
= ‘g2(17 qn+1(t)7 q;+1(t)7 dn+1 ([f])»q;+1([f])7 ‘1:./+1(M)§Pm q")
— &1 (tvanrl t)vp;,ﬂ (t)van ([t])vpiwl(m)vp:ﬂ ([t]);pm qn)l

= |&(t,2a(8), 2, (8), pu([2]), P, ([1]), Py (1)) + % {g(t.pn(0). 2, (). pa([£]). P, (1)), £ ([1])

wm%m%mﬂmm¢wn%m»ﬂ%“m‘”m+%“m‘”m

0 =a0 o) = a0
T et SN AON A () WA NA )

+éng(hpn(t)yp;(f)>pn([tD,p’n([l])yp;’([t]))(pm(l‘) —pa(1))
+ %Dag(hpn(t)ypﬁ,(f)>pn([tD,pi,([l]%pﬁ{([t]))(PZH(t) —p,(1))
+%Daxg(hpn(t)m;(t)7pn([t])7pi,([t])7pff([t]))(pn+1([ZD —pa([1))
+éDsg(t,pn(t),p;(t),pn([t])7pi,([t])7p;’([t]))(P;+1([t]) —p([4)

+éD6g(hpn(f)7172(1)71);1({t])vpﬁz([f])vpﬁf([t])) wi () = P (D).

It follows from Mean Value Theorem that there exists #,(¢)
such that p, () <, (t) <q,(2), pa([t]) <n,([1]) <au([1]), P,
Pu(e) <u;([1]) < ¢,([7]) and

—~ M
)
=
—~
=

Msﬂ
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Ghatkopar (W), Mumbai-400086.

@ Springer



Chaplygin’s method for second-order neutral differential equations

—~
%.H —
~
g - —
©“ o > =
=~
. = ~
—_— O x = —~
—~ o~ —~ ~ == 2% fan
==X === = =4 ~
~mREN N~ == ~ A>7 N
R AN T A SN -
~ ~ O~ ~ \./
R~z =~ 8 Tx -
= R = o= RN gl ~ -
< T = —~ — — —
L L = —~— = = = =
e R @ = = NN = —~ = = =
SEEEELsSsEEX= § = 2 asSEE = = = = =
T = L - Q, = = 2= 3 - Y
T T T YT TYETLY 2= — S =58 _ | , | [
~® ® 82T = .8 = = = = -~ | | | — — —_—
STETETTAESESSE S = = = = = = = =
_—a A A s A= > R, o o E = = = = =
TR R X > = NNl i i I i jnd jnd jd
SEEEEEES = 5 A — T T3 7 % & 3 & s N
SSESSESSSS S B SETSsEY - 2 = = = =
SsSsssSsSsSscsase S fam < — — — — —
S S S SRR AR a = x, = =EX=X=X=Xo 9o 2o =42 = o=
- - - ~ ~ - -~ -~ -~ ~ o —_ == —_ = = ~ —_ = = ~ —
CEEEERE e S L o SESESS =S ESc =S =32 =
= U === - = Z === - = Z === =
oo = 50 SE SESisisi S X T XS XS o= o<
NS A SN RN SRR 8] % - = < ISERSER S S Py Py = =
TS S S RAAXNRXN A S Q P A~ B B e~ B~
SRS SssSass & /= EEEEEEE SR EEEE=E
tttttttt = — A ST SIS SS S XS XY XS XY
= =~ = = = = = = = < Un: — = EEEE 2R o2 S 2 &= S
NV I = oo s E SRS ESEsSE s
< < I I I I I < — e T
EEEEEEEE E oo =< XT3 = % £ % £ %5 £ 5 £°3
NS AR AR AR AR AR AR’ R ~ < T == 5 = 2 YN ] =2 YN ] =2 Y
L T S T e g - = 2222 2 2 2 2
—~ = = =< =< =< < =< < RPN -— e e T = R NN )
ttttttt ~ ~ 5”6 ~ SR e mesaro= T = = = s = = = s =
= = = = = = = = = ~ -~ - = =TT 2 = = = <
- = - T T T = - N - = -
T S =S SRR/ ] R TRV NS == 2 e X 2 X 2 X << = < = =
P - T~ H- B~ I N cua S - S 22 =22 2 =2 == ==
22 EEEEE = n — < -~ T = = = = = = = = = =
~ = = = = 5 = =5 = -8 .~ s & T = S S O QU ]/ S ]S Y
S0 So S0 S0 by bo Sp Sy O TR = S v e e T
D3D4D5D6D2D3D4D5D6 2>f e ,(H\/‘U/‘U/@gﬁ\gﬁ\w@ﬁ\gﬁ\afmﬁ\
- 2 = 2
I S B <N <N < S S < S < S
+ 4+ ++ 00 ~< ) = =2 9 dadaa >4 48 28— 4 =49
B, D T—lwn + + + + + | + | + I + | + I
o =
Orlm ~ > VI
< o -
g(na ~
= <= ~— o
Q&= <= 5
A 2 - 2
o 2 X B
QO w O Y )5
.m(nHO > =
n =L A =

pringer

N's

TRUE COPY

%&t/ipal

Certified as
Ramniranjan Jhunjhunwala College,

In view of the definition of H and the Mean Value Theorem, there exists
Ghatkopar (W), Mumbai-400086.



J. Z. Lobo et al.

Un(t) € (pa(0), 1, (1)), m € N such that p, (¢) <v, (¢) <1, (1), pu([) <va([8)) <1 ([1),
Pull) <y, () <m,([8), py((e]) < v ([2]) <, ([#]), and

|91 (8) = Py ()]

< %H{anﬂ(t) = Puct (O] 419,11 () = Pl (O + lgn1 (1) = pasa ([1])]
+ 1911 ([]) = Pyt (D] + |1 (1) = Pl ([1])

+éDzzg(nvn(t),v;(t),vn([t]),v;([t]),v;’([t]))(nn() V(1)) (a1 () — pa())

() = V() (Pl (1) = P, (1))

N

+ Dssg(t, va(8), v, (1), va([£]), v, ([2), v ([)(

+ Daag (£, va(£), v, (0), va([11), v, (1), v (D) (0 ([2]) = va([2)) (P2 ([1]) — P ([4))
+ Dssg (4, va(),V, (6), va([8)), v, ([2), w3, (D) (1, ([4) = v (D) Wl ([2]) = P ([1]))
+ Desg (4, v (1), v, (), va([8]), v, ([2), vy (D)) (i ([4) = v (1)) (3 (1) = i ([4D) |-

Again, in view of how K is defined, we obtain

912 (0) = 2 (01 < £H{10010) = a1+ a1 () = Pyt ()] + i (1) = P ()
1 (1) = Pt (D] + 14, (1) = P (D1}
5K lant) = PO +1a6) — PO + lan[) — pul1)P

+ gy (1) = 2D + g (1) — P}

Thus,

D211 (1) = Past ()]  Hl g1 (1) = past (6)] + Klgu (1) — pa(0)”

1) *"22¢2
<Hlgra ()= pra 0] +K () 2o

Now, employing Theorem 2, we get

1 2n2282 ! y
|qn+l(t)_p”+1(t)|SK<5) 92n] /e Ois)dS

2nn2 .2
<(s)
—\5) 22
1 n+1 2e
Therefore, by the principle of mathematical induction, we can write
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1gn(6) — pa(2)] < G) e neNo, forre(0.f]

The sharpness of our results are now established completing the proof. O

The following Corollary gives an error bound for the difference between the exact
and the lower (or upper) solution of (1)—(2).

Corollary 1 The absolute error between the exact and the approximate (lower or
upper) solutions of (1)—~(2) is

1\"2¢ 1\"2e¢
6O =01 (5) 35 a0 a0 -01<(5) 35 nENo

where y is the exact solution and p,, ¢, are approximate solutions of second-order
neutral differential equation with piecewise constant delay (1) with initial conditions

2).
Proof The proof follows from Theorem 4 and the triangle inequality. O

Remark 1 We see that the estimate given by (29) is five-times sharper as compared
to that for first-order ordinary differential equations, and 1.67 times sharper than that
for first-order neutral differential equations with piecewise deviating arguments.

Note 1 As seen in Theorem 3 and Theorem 4, following conditions are necessary:

1. The function g must be continuous and possess continuous second order partial
derivatives.

2. The first and second order partial derivatives of g must be bounded.

3. The linear neutral differential equation (see (19) and (20)) must be solvable. (A
general procedure to determine the solvability of second-order neutral differential
equations may be found in [20]).

In the absence of any of these conditions, Chaplygin’s theorem will not hold. As
such, these may be considered as the limitations of the method.

4 Conclusion and future scope

This paper extends certain results on upper and lower solutions to second-order
neutral differential equations with piecewise constant delay. These results are then
used to establish Chaplygin’s theorem for second-order neutral differential equations.
We finally conclude by showing that the results in the present paper are better than
any of those available in existing literature, as we get tighter error bounds.

Since the past few decades, growing interest is seen towards the study of fractional
differential equations. While the most commonly used fractional derivatives are the
Riemann—Liouville, Caputo, and Griinwald-Letnikov, there are some recently
introduced fractional operators (new fractional definitions) such as the generalized
fractional derivative (known as Abu-Shady—Kaabar fractional derivative). This
fractional definition can obtain the same results as Caputo fractional operator in a
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very simple way without the need for modified numerical techniques. As Chaplygin’s
method has not yet been extended to any fractional differential equations, it is an
open problem that the work presented here can be studied for fractional differential
equations, particularly in the sense of Abu-Shady—Kaabar fractional derivative that
has been proposed in [1, 21].
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