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Abstract
This paper is devoted to the investigation of Ulam stability of first-order nonlinear
impulsive dynamic equations on finite-time scale intervals. Our main objective is to
formulate sufficient conditions under which the class of first-order nonlinear
impulsive dynamic equations on time scales we consider exhibits Ulam stability. Our
methods rely on the extended integral inequality on time scales for
piecewise-continuous functions. We provide an example to support the validity of
the results obtained.
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1 Introduction
The theory of impulsive equations has been considered to be one of the significant re-
search topics from both the theoretical as well as application points of view. Impulsive
equations have been widely utilized for modeling the dynamics of processes in which
discontinuous jumps occur unexpectedly during their evolution. Such types of equations
have received appreciable consideration from researchers around the globe. Researchers
have investigated impulsive differential equations for the past several years and the the-
ory for these equations has been developed extensively, readers can refer to the popular
books and interesting papers [1–8], and references therein. However, surprisingly, its dis-
crete version, impulsive difference equations, has been less acknowledged and relatively
few works are available for impulsive difference equations.

The topic of ‘calculus and dynamic equations on time scales’emerged into the mathe-
matics literature about 35 years ago. It provides a unified mathematical framework for
difference equations and differential equations and found applicable in modeling the
continuous-discrete hybrid time phenomena. This topic has now grown profoundly. In
recent years, considerable progress has been made in the theory and applications of im-
pulsive dynamic equations on time scales, we refer to [9–13], and references therein. In the
study of dynamic equations time scales, the stability problem is substantial and of great
interest for researchers working in the field. Although there are several types of stabil-
ity, the Ulam stability is interesting and worthy of attention because it provides a relation
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between the exact solution and an approximate solution of the equation under consid-
eration. To investigate the Ulam stability, there are several approaches available, one of
which is by employing inequality. The main advantage of this approach is that it requires
less restriction and is much simpler than any other approach.

It is worth noting that over the period the Ulam stability of various differential and inte-
gral equations has been investigated by researchers [14–20], to mention a few. In addition,
there are some of the earliest investigations on the Ulam stability of difference equations
[21–27]. Further, along with the development of dynamic equations on time scales, much
work pertaining to the investigation of the Ulam stability for dynamic equations on time
scales is also available, see [28–37].

Motivated by the work mentioned above, we assert that studying the Ulam stability of
impulsive dynamic equations is worthwhile. In this paper, we introduce the Ulam stability
for first-order nonlinear impulsive dynamic equations of the form

x�(t) + p(t)xσ (t) = f
(
t, x(t)

)
, t ∈ J

κ \ {ti}, i ∈N ,

x
(
t+
i
)

– x
(
t–
i
)

= Ii
(
x
(
t–
i
))

, i ∈N ,

x(t0) = A ∈R,

(1)

where J := [t0, T]T, t0, T ∈ T with 0 ≤ t0 < T < ∞, x : J → R is an unknown function to be
determined, xσ = x ◦ σ , x� is the delta derivative of x, p : T → R is positively regressive
and rd-continuous, f : J × R → R is rd-continuous in the first variable and continuous
in the second variable, each ti represents a priori known moments of impulse and sat-
isfies t0 < ti < ti+1 < T , {ti}i∈N ⊂ J, where N = {1, 2, . . . , m} ⊂ N, Ii : R → R describes the
discontinuity of x at each ti.

For results concerning the existence and uniqueness of the solution to the impulsive
dynamic problem (IDP) (1), readers can refer to [38–43]. The existence results for problem
(1) without impulses (i.e., for Ii ≡ 0, i ∈N ) have been studied in [44–46]. We note that the
qualitative and asymptotic analysis of solutions to nonlinear dynamical systems involving
double-phase problems was recently studied in [47–49].

The rest of the paper is structured as follows. Section 2 covers some essential mate-
rials for the readership of this paper. An extended integral inequality on time scales is
established in Sect. 3. In Sect. 4, we investigate Ulam stability of (1) on finite time scale
intervals by means of the extended inequality. An illustrative example is given in Sect. 5.
Finally, conclusions and future research directions are mentioned in Sect. 6.

2 Preliminaries
In this section, we shall provide some essential materials from time scales calculus that are
pertinent to the present paper. The reader can find more details on the topic in [50, 51].
A nonempty, closed subset of the real line R is a time scale T. We usually write Tκ =
T \ {maxT} if maxT < ∞, otherwise Tκ = T.

Definition 2.1 A function f : T → R is said to be delta differentiable at t ∈ Tκ if there
exists f �(t) ∈ R, a so-called delta derivative of f at t, with the following property: For any
ε > 0 there is a neighborhood N of t such that

∣∣f
(
σ (t)

)
– f (s) – f �(t)

(
σ (t) – s

)∣∣ ≤ ε
∣∣σ (t) – s

∣∣ for all s ∈ N .
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Definition 2.2 A function f : T → R is rd-continuous if it is continuous at every right-
dense point or maximal point in T and its left-sided limits exist at left-dense points in T.
The symbol Crd(T,R) will be used for the set of all such functions.

If a function f : T×R → R is rd-continuous in the first variable and continuous in the
second variable, then we write f ∈ Crd(T×R,R).

Note 2.1 The family, Crd(J,R), of all rd-continuous functions from J into R forms a Ba-
nach space coupled with the norm ‖ · ‖ defined as ‖x‖ := supt∈J |x(t)|.

Definition 2.3 A function p : T → R is regressive if 1 + μ(t)p(t) 
= 0 for all t ∈ T. The
symbol R(T,R) will be used for the set of all rd-continuous regressive functions.

If 1 + μ(t)p(t) > 0 for all t ∈ T, then p is said to be positively regressive and R+(T,R)
denotes the set of all rd-continuous positively regressive functions.

Definition 2.4 For p ∈ R(T,R), the exponential function ep(t, s) on the time scale T is
defined as

ep(t, s) :=

⎧
⎨

⎩
exp(

∫ t
s ( Log(1+μ(r)p(r))

μ(r) )�r) if μ(r) 
= 0,

exp(
∫ t

s p(r)�r) if μ(r) = 0.

For p, q ∈R(T,R), we define the following.

p ⊕ q := p + q + μpq, �p :=
–p

1 + μp
, p � q := p ⊕ (�q).

We let

0 < Ep := sup
s,t∈J

∣
∣e�p(t, s)

∣
∣ < ∞.

Lemma 2.1 (See [44, Lemma 3.1]) Let p ∈ (J,R), t0 ∈ T, and f ∈ Crd(J × R,R). Then,
x ∈ Crd(J,R) is a solution of (1) without any impulse, if and only if

x(t) = e�p(t, t0)A +
∫ t

t0

e�p(t, s)f
(
s, x(s)

)
�s for all t ∈ J.

Remark 2.1 From Lemma 2.1, it is clear that x ∈ PC1(J,R) is a solution of (1) if and only if

x(t) = e�p(t, t0)A +
∫ t

t0

e�p(t, s)f
(
s, x(s)

)
�s +

∑

t0<ti<t
e�p(t, ti)Ii

(
x
(
t–
i
))

for all t ∈ J. (2)

Let C(J,R) be the Banach space of all continuous functions x with domain J and taking
values in R with the norm ‖x‖ := supt∈J |x(t)|. We write J0 := [t0, t1] and for each i ∈ N ,
Ji := (ti, ti+1].

Define

PC(J,R) :=
{

x : J→R :x ∈ C(Ji,R) and x
(
t+
i
)
, x

(
t–
i
)

exist with x
(
t–
i
)

= x(ti), i ∈N
}
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and

PC1(J,R) :=
{

x ∈PC(J,R) : x� ∈PC(J,R)
}

.

It can be readily seen that the set PC is a Banach space coupled with the norm‖x‖PC :=
maxi∈N {‖x‖i}, where ‖x‖i = supt∈Ji |x(t)|, and the set PC1(J,R) is also a Banach space cou-
pled with the norm ‖x‖PC1 := max{‖x‖PC ,‖x�‖PC}.

Definition 2.5 A function x ∈ PC1 is said to be a solution of the IDP (1), if x satisfies
the dynamic equation x�(t) + p(t)xσ (t) = f (t, x(t)) everywhere on Jκ \ {ti}, i ∈ N , and the
conditions x(t+

i ) – x(t–
i ) = Ii(x(t–

i )), i ∈N ; x(t0) = A.

Now, we introduce stability definitions that will be used in this paper.

Definition 2.6 The IDP (1) is Hyers–Ulam stable if there exists a constant Kf ,N > 0 with
the following property: For any ε > 0, if y ∈PC1(J,R) is such that

∣
∣y�(t) + p(t)yσ (t) – f

(
t, y(t)

)∣∣ ≤ ε, t ∈ J
κ \ {ti},

∣
∣y

(
t+
i
)

– y
(
t–
i
)

– Ii
(
y
(
t–
i
))∣∣ ≤ ε, i ∈N ,

(3)

then there exists x ∈PC1(J,R) satisfying (1) such that

∣∣y(t) – x(t)
∣∣ ≤ Kf ,N ε, t ∈ J. (4)

The constant Kf ,N > 0 is known as the HUS constant.

Definition 2.7 The IDP (1) is generalized Hyers–Ulam stable if there exists θf ,N ∈
C(R+,R+), θf (0) = 0 with the following property: For any ε > 0, if y ∈ PC1(J,R) is such
that

∣
∣y�(t) + p(t)yσ (t) – f

(
t, y(t)

)∣∣ ≤ ε, t ∈ J
κ \ {ti},

∣
∣y

(
t+
i
)

– y
(
t–
i
)

– Ii
(
y
(
t–
i
))∣∣ ≤ ε, i ∈N ,

(5)

then there exists x ∈PC1(J,R) satisfying (1) such that

∣∣y(t) – x(t)
∣∣ ≤ θf ,N (ε), t ∈ J. (6)

Definition 2.8 The IDP (1) is Hyers–Ulam–Rassias stable with respect to (φ,ψ) if there
exists Kf ,N ,φ > 0 with the following property: For any nondecreasing φ ∈PC1(J,R+), ε > 0,
and ψ ≥ 0, if y ∈PC1(J,R) is such that

∣
∣y�(t) + p(t)yσ (t) – f

(
t, y(t)

)∣∣ ≤ εφ(t), t ∈ J
κ \ {ti},

∣
∣y

(
t+
i
)

– y
(
t–
i
)

– Ii
(
y
(
t–
i
))∣∣ ≤ εψ , i ∈N ,

(7)

then there exists x ∈PC1(J,R) satisfying (1) such that

∣∣y(t) – x(t)
∣∣ ≤ Kf ,N ,φε

(
φ(t) + ψ

)
, t ∈ J. (8)

The constant Kf ,N ,φ > 0 is known as the HURS constant.
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Definition 2.9 The IDP (1) is generalized Hyers–Ulam–Rassias stable with respect to
(φ,ψ) if there exists Kf ,N ,φ > 0 with the following property: For any nondecreasing φ ∈
PC1(J,R+) and ψ ≥ 0, if y ∈PC1(J,R) is such that

∣∣y�(t) + p(t)yσ (t) – f
(
t, y(t)

)∣∣ ≤ φ(t), t ∈ J
κ \ {ti},

∣∣y
(
t+
i
)

– y
(
t–
i
)

– Ii
(
y
(
t–
i
))∣∣ ≤ ψ , i ∈N ,

(9)

then there exists x ∈PC1(J,R) satisfying (1) such that

∣
∣y(t) – x(t)

∣
∣ ≤ Kf ,N ,φ

(
φ(t) + ψ

)
, t ∈ J. (10)

The constant Kf ,N ,φ > 0 is known as the GHURS constant.

Remark 2.2 A function y ∈ PC1(J,R) satisfies (7) if and only if there exists a function
g ∈PC1(J,R) and a sequence {gi}i∈N (which depends on y) with the following properties:

(i) |g(t)| ≤ εφ(t), t ∈ J and |gi| ≤ εψ ;
(ii) y�(t) + p(t)yσ (t) = f (t, y(t)) + g(t), t ∈ Jκ \ {ti};

(iii) y(t+
i ) – y(t–

i ) = Ii(y(t–
i )) + gi, i ∈N .

Similar arguments hold for the inequalities (5) and (9).

Lemma 2.2 (See [12, Lemma 2.1]) Let t0, t ∈ T with t ≥ t0 > 0, y ∈ Crd(T,R), p ∈R+(T,R),
and c, bi ∈R+, i ∈N . Then,

y(t) ≤ c +
∫ t

t0

p(s)y(s)�s +
∑

t0<ti<t
biy(ti), t ≥ t0

implies

y(t) ≤ c
∏

t0<ti<t
(1 + bi)ep(t, t0), t ≥ t0.

3 Extended integral inequality on time scales
In this section, we establish the timescale analog of the integral inequality for the
piecewise-continuous functions studied by Samoilenko and Perestyuk [6].

Theorem 3.1 Let t0, t ∈ T, t ≥ t0, and the following inequality hold:

y(t) ≤ a(t) +
∫ t

t0

p(s)y(s)�s +
∑

t0<ti<t
biy(ti), t ≥ t0, (11)

where bk ∈ R+, i ∈ N , y ∈ PC(T,R), p ∈ R+(T,R), and a ∈ PC(T,R+) is a nondecreasing
function. Then, the following inequality is valid:

y(t) ≤ a(t)
∏

t0<ti<t
(1 + bi)ep(t, t0), t ≥ t0.
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Proof We rewrite (11) as

y(t) ≤ a(t) +
∫ t

t0

p(s)
y(s)
a(s)

a(s)�s +
∑

t0<ti<t
bi

y(ti)
a(ti)

a(ti).

Since a is nondecreasing and a(t) > 0, t ≥ t0, we obtain

y(t) ≤ a(t) +
∫ t

t0

p(s)
y(s)
a(s)

a(t)�s +
∑

t0<ti<t
bi

y(ti)
a(ti)

a(t),

i.e.,

y(t)
a(t)

≤ 1 +
∫ t

t0

p(s)
y(s)
a(s)

�s +
∑

t0<ti<t
bi

y(ti)
a(ti)

.

Now, application of Lemma 2.2 yields,

y(t)
a(t)

≤ 1
∏

t0<ti<t
(1 + bi)ep(t, t0), t ≥ t0.

That is,

y(t) ≤ a(t)
∏

t0<ti<t
(1 + bi)ep(t, t0), t ≥ t0.

This completes the proof. �

4 Main results
In this section, we investigate the Ulam stability for first-order nonlinear impulsive dy-
namic equations on time scales (1), by means of the impulsive integral inequality given in
Theorem 3.1. For this, below we list some essential conditions:

(C1) Let p ∈R+(J,R).
(C2) For f ∈ Crd(J×R,R), there exists a function Lf ∈ C(J,R+) such that

∣∣f (t, u) – f (t, v)
∣∣ ≤ Lf (t)|u – v| for all t ∈ J and u, v ∈R. (12)

Also, set L∗
f := supt∈J Lf (t).

(C3) For I : R →R, there exists a constant LIi > 0 such that

∣∣Ii
(
u
(
t–
i
))

– Ii
(
v
(
t–
i
))∣∣ ≤ LIi |u – v| for all u, v ∈R and i ∈N . (13)

(C4) For a nondecreasing function φ ∈PC(J,R), there exists a constant Lφ such that

∫ t

t0

φ(s)�s ≤ Lφφ(t) for all t ∈ J. (14)

Theorem 4.1 Consider the IDP (1). Under the conditions (C1)–(C4), the following asser-
tions hold:
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(i) If (EpL∗
f (T – t0) +

∑m
i=1 |e�p(T , ti)|LIi ) < 1, then the IDP (1) has a unique solution

x ∈PC1(J,R) satisfying initial condition x(t0) = A for any initial value A ∈R.
(ii) The IDP (1) is Hyers–Ulam–Rassias stable with respect to (φ,ψ) and the HURS

constant is Epε(Lφ + m)
∏

i∈N (1 + EpLIi )eEpL∗
f
(T , t0).

Proof (i) First, fix A ∈R and define the mapping F : PC1(J,R) →PC1(J,R) by

F[x](t) := e�p(t, t0)A +
∫ t

t0

e�p(t, s)f
(
s, x(s)

)
�s +

∑

t0<ti<t
e�p(t, ti)Ii

(
x
(
t–
i
))

. (15)

In view of Remark 2.1, it is clear that the fixed points of F are the solutions of (1). Hence,
we show that F has a fixed point and for this we use the contraction mapping principle.
For any x, y ∈ PC1(J,R), we can write

∣
∣F[x](t) – F[y](t)

∣
∣

≤ ∣∣e�p(t, t0)
∣∣|A – A| +

∫ t

t0

∣∣e�p(t, s)
∣∣∣∣f

(
s, x(s)

)
– f

(
s, y(s)

)∣∣�s

+
∑

t0<ti<t

∣∣e�p(t, ti)
∣∣∣∣Ii

(
x
(
t–
i
))

– Ii
(
y
(
t–
i
))∣∣

(C2),(C3)≤ Ep

∫ t

t0

Lf (t)
∣
∣x(s) – y(s)

∣
∣�s +

∑

t0<ti<t

∣
∣e�p(t, ti)

∣
∣LIi

∣
∣x

(
t–
i
)

– y
(
t–
i
)∣∣

≤
(

EpLf (t)(T – t0) +
∑

t0<ti<t
LIi

∣∣e�p(t, ti)
∣∣
)

‖x – y‖PC1 .

Thus, for all x, y ∈PC1(J,R)

∥∥F[x] – F[y]
∥∥
PC1 ≤

(

EpL∗
f (T – t0) +

m∑

i=1

LIi

∣∣e�p(T , ti)
∣∣
)

‖x – y‖PC1 .

Since (EpL∗
f (T – t0)+

∑m
i=1 |e�p(T , ti)|LIi ) < 1, the above inequality implies that the mapping

F is contraction on PC1(J,R). Therefore, F has a unique fixed point x∗ ∈PC1(J,R), which
is the unique solution of the IDP (1) satisfying x∗(t0) = A.

(ii) Let y ∈PC1(J,R) satisfy (7) and let x ∈PC1(J,R) be the unique solution of (1) satis-
fying initial condition x(t0) = y(t0). Then, in view of (C1), Remark 2.1 allows us to write

x(t) = e�p(t, t0)y(t0) +
∫ t

t0

e�p(t, s)f
(
s, x(s)

)
�s +

∑

t0<ti<t
e�p(t, ti)Ii

(
x
(
t–
i
))

for all t ∈ J.

Now, since y ∈PC1(J,R) satisfies (7), by Remark 2.2, we can write

y�(t) + p(t)yσ (t) = f
(
t, y(t)

)
+ g(t) for all t ∈ J

κ \ {ti}

and

y
(
t+
i
)

– y
(
t–
i
)

= Ii
(
y
(
t–
i
))

+ gi, i ∈N ,
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where |g(t)| ≤ εφ(t) for all t ∈ J and |gi| ≤ εψ , i ∈N . Thus,

y(t) = e�p(t, t0)y(t0) +
∫ t

t0

e�p(t, s)
[
f
(
s, y(s)

)
+ g(s)

]
�s

+
∑

t0<ti<t
e�p(t, ti)

(
Ii
(
y
(
t–
i
))

+ gi
)

= e�p(t, t0)y(t0) +
∫ t

t0

e�p(t, s)f
(
s, y(s)

)
�s +

∫ t

t0

e�p(t, s)g(s)�s

+
∑

t0<ti<t
e�p(t, ti)Ii

(
y
(
t–
i
))

+
∑

t0<ti<t
e�p(t, ti)gi.

This gives

∣∣
∣∣y(t) – e�p(t, t0)y(t0) –

∫ t

t0

e�p(t, s)f
(
s, y(s)

)
�s –

∑

t0<ti<t
e�p(t, ti)Ii

(
y
(
t–
i
))

∣∣
∣∣

≤
∫ t

t0

∣∣e�p(t, s)
∣∣∣∣g(s)

∣∣�s +
∑

t0<ti<t

∣∣e�p(t, ti)
∣∣|gi|

≤ Epε

∫ t

t0

φ(s)�s + Ep
∑

t0<ti<t
εψ

(C4)≤ EpεLφφ(t) + mEpεψ

= Epε
(
Lφφ(t) + mψ

)
for all t ∈ J. (16)

Now, for t ∈ J, we can write

∣
∣y(t) – x(t)

∣
∣

=
∣
∣∣∣y(t) – e�p(t, t0)y(t0) –

∫ t

t0

e�p(t, s)f
(
s, x(s)

)
�s +

∫ t

t0

e�p(t, s)f
(
s, y(s)

)
�s

–
∫ t

t0

e�p(t, s)f
(
s, y(s)

)
�s –

∑

t0<ti<t
e�p(t, ti)Ii

(
x
(
t–
i
))

–
∑

t0<ti<t
e�p(t, ti)Ii

(
y
(
t–
i
))

+
∑

t0<ti<t
e�p(t, ti)Ii

(
y
(
t–
i
))

∣∣
∣∣

≤
∣∣
∣∣y(t) – e�p(t, t0)y(t0) –

∫ t

t0

e�p(t, s)f
(
s, y(s)

)
�s –

∑

t0<ti<t
e�p(t, ti)Ii

(
y
(
t–
i
))

∣∣
∣∣

+
∣
∣∣
∣
∑

t0<ti<t
e�p(t, ti)Ii

(
x
(
t–
i
))

–
∑

t0<ti<t
e�p(t, ti)Ii

(
y
(
t–
i
))

∣
∣∣
∣

+
∣∣
∣∣

∫ t

t0

e�p(t, s)f
(
s, y(s)

)
�s –

∫ t

t0

e�p(t, s)f
(
s, x(s)

)
�s

∣∣
∣∣

(16)≤ Epε
(
Lφφ(t) + mψ

)
+

∫ t

t0

∣∣e�p(t, s)
∣∣∣∣f

(
s, y(s)

)
– f

(
s, x(s)

)∣∣�s

+
∑

t0<ti<t

∣∣e�p(t, ti)
∣∣∣∣Ii

(
x
(
t–
i
))

– Ii
(
y
(
t–
i
))∣∣



Scindia et al. Boundary Value Problems         (2023) 2023:86 Page 9 of 13

(C2), (C3)≤ Epε
(
Lφφ(t) + mψ

)
+

∫ t

t0

Lf (s)
∣∣e�p(t, s)

∣∣∣∣y(s) – x(s)
∣∣�s

+
∑

t0<ti<t

∣∣e�p(t, ti)
∣∣LIi

∣∣x
(
t–
i
)

– y
(
t–
i
)∣∣

≤ Epε
(
Lφφ(t) + mψ

)
+

∫ t

t0

EpLf (s)
∣∣x(s) – y(s)

∣∣�s +
∑

t0<ti<t
EpLIi

∣∣x
(
t–
i
)

– y
(
t–
i
)∣∣.

According to Theorem 3.1, we can write for all t ≥ t0

∣
∣y(t) – x(t)

∣
∣ ≤ Epε

(
Lφφ(t) + mψ

) ∏

t0<ti<t
(1 + EpLIi )eEpLf (t, t0)

≤ Ep(Lφ + m)ε
(
φ(t) + ψ

) ∏

i∈N
(1 + EpLIi )eEpL∗

f
(T , t0),

i.e.,

∣∣y(t) – x(t)
∣∣ ≤ Kf ,N ,φε

(
φ(t) + ψ

)
,

where Kf ,N ,φ := Ep(Lφ + m)
∏

i∈N (1 + EpLIi )eEpL∗
f
(T , t0). Thus, the IDP (1) is Hyers–

Ulam–Rassias stable with respect to (φ,ψ). �

Corollary 4.1 Consider the IDP (1). Under the conditions (C1)–(C4), the IDP (1) is gen-
eralized Hyers–Ulam–Rassias stable with respect to (φ,ψ) and the GHURS constant is
Ep(Lφ + m)

∏
i∈N (1 + EpLIi )eEpL∗

f
(T , t0).

Proof In the proof of Theorem 4.1, we take ε = 1 and the proof follows. �

Corollary 4.2 Consider the IDP (1). Under the conditions (C1)–(C4), IDP (1) is Hyers–
Ulam stable and the HUS constant is 2Epε(T – t0 + m)

∏
i∈N (1 + EpLIi )eEpL∗

f
(T , t0).

Proof In the proof of Theorem 4.1, we take φ(t) ≡ 1 and ψ = 1 and the proof follows
easily. �

Corollary 4.3 Consider the IDP (1). Under the conditions (C1)–(C4), IDP (1) is generalized
Hyers–Ulam stable.

Proof Taking θf ,N (ε) := Epε(T – t0 + m)
∏

i∈N (1 + EpLIi )eEpL∗
f
(T , t0) the result follows from

Corollary 4.2. �

Remark 4.1 In the absence of impulses (i.e., for Ii ≡ 0, i ∈N ), Theorem 4.1 and its corol-
laries are reduced to the results of [33].

5 Illustrative example
In this section, we give an illustrative example to show the validity of our result obtained
in Sect. 5 concerning the Ulam stability of IDP (1) in the finite time scale domain.
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Example 5.1 Let T = [0, 1] ∪ [2, 3] and t0 = 0, T = 3, t1 = 1
2 , and t2 = 3

2 . Then, take J :=
[0, 3]T. Consider the impulsive dynamic problem

x�(t) + xσ (t) =
1

10e2

(
x2(t) + 2

) 1
2 + t, t ∈ [0, 3]κ

T
\ {t1, t2},

x
(
t+
k
)

– x
(
t–
k
)

=
x(t–

k )
1 + x(t–

k )
, k = 1, 2,

x(0) = 0

(17)

and its associated inequality

∣∣
∣∣y

�(t) + yσ (t) –
1

10e2

(
y2(t) + 2

) 1
2 – t

∣∣
∣∣ ≤ ε, t ∈ [0, 3]κ

T
\ {t1, t2},

∣∣
∣∣y

(
t+
k
)

– y
(
t–
k
)

–
y(t–

k )
1 + y(t–

k )

∣∣
∣∣ ≤ ε, k = 1, 2.

(18)

Here, p(t) ≡ 1 for which 1 + μ(t)p(t) > 0, f (t, x(t)) = 1
10e2 (x2(t) + 5) 1

2 + t that verifies (C2)
with L∗

f = 1
10e2 , and Ik(x(t–

k )) = x(t–
k )

1+x(t–
k ) that verifies (C3) with LIk = 1. With these values, we

obtain

Ep = sup
s,t∈[0,3]T

∣
∣e�p(t, s)

∣
∣ = 2e2,

e�p(T , t1) = e�1(3, 1
2 ) = 1

e2√
e and e�p(T , t2) = e�1(3, 3

2 ) = 1
e
√

e . This leads to

EpL∗
f (T – t0) +

∣∣e�p(T , t1)
∣∣LI1 +

∣∣e�p(T , t2)
∣∣LI2 = 2e2 1

10e2 (3 – 0) +
1

e2√e
(1) +

1
e
√

e
(1)

=
3
5

+
1

e2√e
+

1
e
√

e

< 1.

Thus, all conditions in Corollary 4.2 are satisfied. Hence, the impulsive dynamic problem
(17) has a unique solution. This unique solution is given by

x(t) =
∫ t

0
e�1(t, s)

(
1

10e2

(
x2(s) + 5

) 1
2 + s

)
�s + e�p(t, 1/2)

x( 1
2

–)
1 + x( 1

2
–)

+ e�p(t, 3/2)
x( 3

2
–)

1 + x( 3
2

–)
, t ∈ [0, 3]κ

T
. (19)

Next, let y ∈ PC1(J,R) be a solution of (18). Then, by Remark 2.2, there exists g ∈
PC1(J,R) and g1, g2 ∈R with |g(t)| ≤ ε and |g1| ≤ ε, |g2| ≤ ε such that

y�(t) + yσ (t) =
1

10e2

(
y2(t) + 2

) 1
2 + t + g(t), t ∈ [0, 3]κ

T
\ {t1, t2},

y
(
t+
k
)

– y
(
t–
k
)

=
y(t–

k )
1 + y(t–

k )
+ gk , k = 1, 2.

(20)
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By Remark 2.1, the unique solution of (20) is given by

y(t) =
∫ t

0
e�1(t, s)

(
1

10e2

(
y2(s) + 5

) 1
2 + s + g(s)

)
�s + e�1(t, 1/2)

( y( 1
2

–)
1 + y( 1

2
–)

+ g1

)

+ e�p(t, 3/2)
( y( 3

2
–)

1 + y( 3
2

–)
+ g2

)
, t ∈ [0, 3]κ

T
. (21)

Now, from (19) and (21), we can write for t ∈ [0, 3]κ
T

∣∣y(t) – x(t)
∣∣

=
∣
∣∣
∣

∫ t

0
e�1(t, s)

[(
1

10e2

(
y2(s) + 5

) 1
2 + s

)
–

(
1

10e2

(
x2(s) + 5

) 1
2 + s

)]
�s

+ e�1(t, 1/2)
[ y( 1

2
–)

1 + y( 1
2

–)
–

x( 1
2

–)
1 + x( 1

2
–)

+ g1

]

+ e�1(t, 3/2)
[ y( 3

2
–)

1 + y( 3
2

–)
–

x( 3
2

–)
1 + x( 3

2
–)

+ g2

]
+

∫ t

0
e�1(t, s)g(s)�s

∣∣∣
∣

≤
∫ t

0

∣
∣e�1(t, s)

∣
∣ 1
10e2

∣
∣y(s) – x(s)

∣
∣�s +

∣
∣e�1(t, 1/2)

∣
∣
∣∣
∣∣y

(
1
2

–)
– x

(
1
2

–)∣∣
∣∣

+
∣
∣e�1(t, 3/2)

∣
∣
∣∣
∣∣y

(
3
2

–)
– x

(
3
2

–)∣∣
∣∣ +

∣
∣e�1(t, 1/2)

∣
∣|g1| +

∣
∣e�1(t, 3/2)

∣
∣|g2|

+
∫ t

0

∣
∣e�1(t, s)

∣
∣
∣
∣g(s)

∣
∣�s

≤
∫ t

0

1
10e

∣∣y(s) – x(s)
∣∣�s +

√
e
∣
∣∣∣y

(
1
2

–)
– x

(
1
2

–)∣
∣∣∣

+ e
√

e
∣∣
∣∣y

(
3
2

–)
– x

(
3
2

–)∣∣
∣∣ + ε

√
e + εe

√
e + ε

∫ t

0

∣
∣e�1(t, s)

∣
∣�s

≤ ε
√

e + εe
√

e + εet +
∫ t

0

1
10e

∣∣y(s) – x(s)
∣∣�s +

√
e
∣
∣∣
∣y

(
1
2

–)
– x

(
1
2

–)∣
∣∣
∣

+ e
√

e
∣∣∣
∣y

(
3
2

–)
– x

(
3
2

–)∣∣∣
∣

= (
√

e + e
√

e + et)ε +
∫ t

0

1
10e

∣∣y(s) – x(s)
∣∣�s +

√
e
∣
∣∣∣y

(
1
2

–)
– x

(
1
2

–)∣
∣∣∣

+ e
√

e
∣
∣∣
∣y

(
3
2

–)
– x

(
3
2

–)∣
∣∣
∣.

Employing Theorem 3.1 with a(t) = (
√

e + e
√

e + et)ε, p(s) = 1
10e , and bi = ei–1√e; i = 1, 2,

we obtain

∣
∣y(t) – x(t)

∣
∣ ≤ ε(

√
e + e

√
e + et)(1 +

√
e)(1 + e

√
e)e 1

10e
(t, 0), t ≥ 0.

Thus, |y(t) – x(t)| ≤ εe(3 + 2
√

e)(1 +
√

e)(1 + e
√

e)e 1
10e

(3, 0), t ∈ [0, 3]T, which yields that
(17) has Hyers–Ulam stability with HUS constant e(3 + 2

√
e)(1 +

√
e)(1 + e

√
e)e 1

10e
(3, 0).



Scindia et al. Boundary Value Problems         (2023) 2023:86 Page 12 of 13

6 Conclusion
We have investigated the Ulam stability for first-order nonlinear impulsive dynamic equa-
tions on bounded timescale intervals. We have achieved our results by effectively em-
ploying an extended integral inequality on time scales. The Ulam stability is an essential
and reliable tool in solving the considered problem approximately, when it is not easy to
find the exact solution. Also, impulsive dynamic equations are committed to model the
continuous-discrete hybrid phenomena that unexpectedly undergo some discontinuous
jumps during their evolution. Thus, we are confident that the results of the present paper
are valuable and find their place in approximation theory, control theory, optimization,
and other related fields. We believe that the results obtained in this paper can be easily ex-
tended to systems of impulsive dynamic equations and to Banach spaces. Further, it would
be an exciting topic to study impulsive problems (1) with suitable delays.
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